| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 6.73 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Neste trabalho foi desenvolvido o projeto de um coletor solar flexível, de baixo custo, de fácil transporte e com boa maneabilidade, que atendesse a demanda de água quente tanto em cidades de clima temperado quanto em cidades tropicais. Para isso, foram feitas simulações numéricas para verificar o desempenho e acompanhou-se o processo de produção de um protótipo. O material escolhido para fabricar o coletor foi o filme de Poliuretano (PU) devido ao seu preço acessível, propriedades térmicas e facilidade em encontra-lo no mercado. O coletor é constituído por 3 peças: placa absorvedora, capa para isolamento e cobertura transparente. Dois modelos de coletores foram desenhados no software SolidWorks e simulados no ANSYS®, em situações climáticas do inverno no Porto e em Fortaleza. Após realizar as simulações do primeiro modelo, foi construído um protótipo demonstrativo para identificar as oportunidades de melhoria encontradas em sua produção, a partir do comportamento observado, o segundo modelo foi desenvolvido, mais barato e de fabricação mais rápida. Mesmo com a redução de custos na fabricação, ambos os modelos apresentaram desempenho similar em 2,5%. Das simulações verificou-se que o sistema com um único coletor, ao final do dia, aquecia a água de um reservatório com 150 litros de 20 oC para 30,61 oC no Porto e para 38,12 oC em Fortaleza. Com dois coletores ligados em paralelo, a temperatura da água ao fim do dia era de 39,77 oC no Porto e de 49,72 oC em Fortaleza. Por fim, ao analisar a influência da velocidade de escoamento no desempenho do coletor, percebeu-se que, em três velocidades analisadas, quanto mais lento é o escoamento, maior é o aquecimento da água pelo coletor, atingindo uma eficiência (ignorando as perdas de calor) de 88% para a velocidade do fluido de 0,02 m/s, com número de Reynolds de 300, ou seja, com Escoamento Laminar.
A flexible solar collector project was developed in this work, aiming to be low cost, easy transportation and good handling, and that also meets the demand of hot water in both tropical and temperate cities. To verify the collector performance, numerical simulations were done and, to improve its manufacturing, a prototype was built. Its chosen material was Polyurethane film (PU) due to its affordable price, thermal properties and market availability. The collector is composed by three parts: an absorber plate, an isolation cover and a transparent roof. Two collectors’ models were designed in SolidWorks and simulated in ANSYS®, under Porto and Fortaleza winter conditions. After performing the simulations of the first model, a demonstrative prototype was built to identify the possible improvements found in its production. From what was observed, the second model was developed, cheaper and of easier manufacturing. Despite the cost reduction, the models presented only 2,5% of difference in their results. A system with one designed collector could heat, by the end of the day, water in a tank with a volume of 150 liters from 20 oC to 30,61 oC in Porto and to 38,12 oC in Fortaleza. While with two collectors connected in parallel, the water temperature went to 39,77 oC in Porto and 49,72 oC in Fortaleza. Lastly, when analyzing the influence of flow velocity in the collector performance, the slowest of the three velocities analyzed has the best water heating, reaching a maximum efficiency (disregarding the losses) of 88% for the fluid velocity of 0,02 m/s and Reynolds number of 300, meaning that the system has a laminar flow.
A flexible solar collector project was developed in this work, aiming to be low cost, easy transportation and good handling, and that also meets the demand of hot water in both tropical and temperate cities. To verify the collector performance, numerical simulations were done and, to improve its manufacturing, a prototype was built. Its chosen material was Polyurethane film (PU) due to its affordable price, thermal properties and market availability. The collector is composed by three parts: an absorber plate, an isolation cover and a transparent roof. Two collectors’ models were designed in SolidWorks and simulated in ANSYS®, under Porto and Fortaleza winter conditions. After performing the simulations of the first model, a demonstrative prototype was built to identify the possible improvements found in its production. From what was observed, the second model was developed, cheaper and of easier manufacturing. Despite the cost reduction, the models presented only 2,5% of difference in their results. A system with one designed collector could heat, by the end of the day, water in a tank with a volume of 150 liters from 20 oC to 30,61 oC in Porto and to 38,12 oC in Fortaleza. While with two collectors connected in parallel, the water temperature went to 39,77 oC in Porto and 49,72 oC in Fortaleza. Lastly, when analyzing the influence of flow velocity in the collector performance, the slowest of the three velocities analyzed has the best water heating, reaching a maximum efficiency (disregarding the losses) of 88% for the fluid velocity of 0,02 m/s and Reynolds number of 300, meaning that the system has a laminar flow.
Description
Dupla diplomação com o Centro Federal de Educação Tecnológica Celso Suckow da Fonseca
Keywords
Coletor solar flexível Coletor solar de baixo custo Energia solar Aquecimento de água residencial Simulações numéricas
