Publication
Adaptive Convolutional Neural Network for Predicting Steering Angle and Acceleration on Autonomous Driving Scenario
| dc.contributor.author | Vasiljević, Ive | |
| dc.contributor.author | Musić, Josip | |
| dc.contributor.author | Mendes, João | |
| dc.contributor.author | Lima, José | |
| dc.date.accessioned | 2024-10-08T15:52:40Z | |
| dc.date.available | 2024-10-08T15:52:40Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | This paper introduces a novel approach to autonomous vehicle control using an end-to-end learning framework. While existing solutions in the field often rely on computationally expensive architectures, our proposed lightweight model achieves comparable efficiency. We leveraged the Car Learning to Act (CARLA) simulator to generate training data by recording sensor inputs and corresponding control actions during simulated driving. The Mean Squared Error (MSE) loss function served as a performance metric during model training. Our end-to-end learning architecture demonstrates promising results in predicting steering angle and throttle, offering a practical and accessible solution for autonomous driving. Results of the experiment showed that our proposed network is ≈ 5.4 times lighter than Nvidia’s PilotNet and had a slightly lower testing loss. We showed that our network is offering a balance between performance and computational efficiency. By eliminating the need for handcrafted feature engineering, our approach simplifies the control process and reduces computational demands. Experimental evaluation on a testing map showcases the model’s effectiveness in real-world scenarios whilst being competitive with other existing models. | pt_PT |
| dc.description.sponsorship | The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA /P/0007/2021). | pt_PT |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.citation | Vasiljević, Ive; Musić, Josip; Mendes, João; Lima, José (2024). Adaptive Convolutional Neural Network for Predicting Steering Angle and Acceleration on Autonomous Driving Scenario. In 3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023). Cham: Springer Nature, Vol. 2, p. 132–147. ISBN 978-3-031-53035-7 | pt_PT |
| dc.identifier.doi | 10.1007/978-3-031-53036-4_10 | pt_PT |
| dc.identifier.isbn | 978-3-031-53035-7 | |
| dc.identifier.isbn | 978-3-031-53036-4 | |
| dc.identifier.uri | http://hdl.handle.net/10198/30388 | |
| dc.language.iso | eng | pt_PT |
| dc.peerreviewed | yes | pt_PT |
| dc.publisher | Springer Nature | pt_PT |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
| dc.subject | Autonomous vehicles | pt_PT |
| dc.subject | End-to-end learning | pt_PT |
| dc.subject | CARLA simulator | pt_PT |
| dc.subject | Deep learning | pt_PT |
| dc.subject | Convolutional neural network | pt_PT |
| dc.title | Adaptive Convolutional Neural Network for Predicting Steering Angle and Acceleration on Autonomous Driving Scenario | pt_PT |
| dc.type | conference paper | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT | |
| oaire.citation.endPage | 147 | pt_PT |
| oaire.citation.startPage | 132 | pt_PT |
| oaire.citation.title | 3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023) | pt_PT |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| person.familyName | Mendes | |
| person.familyName | Lima | |
| person.givenName | João | |
| person.givenName | José | |
| person.identifier | 2726655 | |
| person.identifier | R-000-8GD | |
| person.identifier.ciencia-id | EA1F-844D-6BA9 | |
| person.identifier.ciencia-id | 6016-C902-86A9 | |
| person.identifier.orcid | 0000-0003-0979-8314 | |
| person.identifier.orcid | 0000-0001-7902-1207 | |
| person.identifier.rid | L-3370-2014 | |
| person.identifier.scopus-author-id | 57225794972 | |
| person.identifier.scopus-author-id | 55851941311 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| rcaap.rights | restrictedAccess | pt_PT |
| rcaap.type | conferenceObject | pt_PT |
| relation.isAuthorOfPublication | b5c9de22-cf9e-47b8-b7a4-26e08fb12b28 | |
| relation.isAuthorOfPublication | d88c2b2a-efc2-48ef-b1fd-1145475e0055 | |
| relation.isAuthorOfPublication.latestForDiscovery | d88c2b2a-efc2-48ef-b1fd-1145475e0055 | |
| relation.isProjectOfPublication | 6e01ddc8-6a82-4131-bca6-84789fa234bd | |
| relation.isProjectOfPublication | d0a17270-80a8-4985-9644-a04c2a9f2dff | |
| relation.isProjectOfPublication | 6255046e-bc79-4b82-8884-8b52074b4384 | |
| relation.isProjectOfPublication.latestForDiscovery | d0a17270-80a8-4985-9644-a04c2a9f2dff |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Adaptive Convolutional Neural Network.pdf
- Size:
- 2.22 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.75 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
