Repository logo
 
Publication

Adaptive Convolutional Neural Network for Predicting Steering Angle and Acceleration on Autonomous Driving Scenario

dc.contributor.authorVasiljević, Ive
dc.contributor.authorMusić, Josip
dc.contributor.authorMendes, João
dc.contributor.authorLima, José
dc.date.accessioned2024-10-08T15:52:40Z
dc.date.available2024-10-08T15:52:40Z
dc.date.issued2024
dc.description.abstractThis paper introduces a novel approach to autonomous vehicle control using an end-to-end learning framework. While existing solutions in the field often rely on computationally expensive architectures, our proposed lightweight model achieves comparable efficiency. We leveraged the Car Learning to Act (CARLA) simulator to generate training data by recording sensor inputs and corresponding control actions during simulated driving. The Mean Squared Error (MSE) loss function served as a performance metric during model training. Our end-to-end learning architecture demonstrates promising results in predicting steering angle and throttle, offering a practical and accessible solution for autonomous driving. Results of the experiment showed that our proposed network is ≈ 5.4 times lighter than Nvidia’s PilotNet and had a slightly lower testing loss. We showed that our network is offering a balance between performance and computational efficiency. By eliminating the need for handcrafted feature engineering, our approach simplifies the control process and reduces computational demands. Experimental evaluation on a testing map showcases the model’s effectiveness in real-world scenarios whilst being competitive with other existing models.pt_PT
dc.description.sponsorshipThe authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA /P/0007/2021).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationVasiljević, Ive; Musić, Josip; Mendes, João; Lima, José (2024). Adaptive Convolutional Neural Network for Predicting Steering Angle and Acceleration on Autonomous Driving Scenario. In 3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023). Cham: Springer Nature, Vol. 2, p. 132–147. ISBN 978-3-031-53035-7pt_PT
dc.identifier.doi10.1007/978-3-031-53036-4_10pt_PT
dc.identifier.isbn978-3-031-53035-7
dc.identifier.isbn978-3-031-53036-4
dc.identifier.urihttp://hdl.handle.net/10198/30388
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer Naturept_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectAutonomous vehiclespt_PT
dc.subjectEnd-to-end learningpt_PT
dc.subjectCARLA simulatorpt_PT
dc.subjectDeep learningpt_PT
dc.subjectConvolutional neural networkpt_PT
dc.titleAdaptive Convolutional Neural Network for Predicting Steering Angle and Acceleration on Autonomous Driving Scenariopt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT
oaire.citation.endPage147pt_PT
oaire.citation.startPage132pt_PT
oaire.citation.title3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023)pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameMendes
person.familyNameLima
person.givenNameJoão
person.givenNameJosé
person.identifier2726655
person.identifierR-000-8GD
person.identifier.ciencia-idEA1F-844D-6BA9
person.identifier.ciencia-id6016-C902-86A9
person.identifier.orcid0000-0003-0979-8314
person.identifier.orcid0000-0001-7902-1207
person.identifier.ridL-3370-2014
person.identifier.scopus-author-id57225794972
person.identifier.scopus-author-id55851941311
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationb5c9de22-cf9e-47b8-b7a4-26e08fb12b28
relation.isAuthorOfPublicationd88c2b2a-efc2-48ef-b1fd-1145475e0055
relation.isAuthorOfPublication.latestForDiscoveryd88c2b2a-efc2-48ef-b1fd-1145475e0055
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication6255046e-bc79-4b82-8884-8b52074b4384
relation.isProjectOfPublication.latestForDiscoveryd0a17270-80a8-4985-9644-a04c2a9f2dff

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Adaptive Convolutional Neural Network.pdf
Size:
2.22 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: