Name: | Description: | Size: | Format: | |
---|---|---|---|---|
8.9 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
A estratégia de controle por decaimento, também denominada de controle droop, é uma das mais estudadas quando o assunto é Microrredes (MRs). Esta técnica possui algumas vantagens, destacando-se o efetivo compartilhamento de potência e a ausência de links de comunicação entre os inversores. Desse modo, reduz-se a complexidade, melhora-se a flexibilidade e a redundância do sistema, além de facilitar a expansão da capacidade da MR devido à característica plug-and-play.
O objetivo geral deste trabalho consiste em analisar o controle droop em uma MR isolada, em Corrente Alternada (CA) monofásica, com geração solar fotovoltaica, na ferramenta computacional Simulink do software MATLAB®. A MR modelada neste estudo integra três inversores monofásicos em paralelo, os quais trabalham em conjunto compartilhando as cargas da MR. Dois desses inversores possuem baterias como fontes de energia, nos quais é aplicado o controle droop. Por sua vez, o terceiro possui como fonte de energia uma fileira de módulos fotovoltaicos, com a função de injetar potência na MR. Nesse sentido, o terceiro inversor não participa da estratégia de controle droop, apenas mantém a sua topologia de controle usual.
A MR modelada e simulada no MATLAB® corresponde a um sistema monofásico com tensão eficaz 230 V e frequência 50 Hz. As baterias utilizadas são de 400 V e a fileira é composta de 5 módulos fotovoltaicos de 220 Wp cada. O controle droop é projetado para que a frequência angular na MR varie no máximo 2% do valor nominal e a magnitude de tensão varie no máximo 5% do valor nominal.
Com objetivo de validar o controle proposto, a MR foi simulada considerando diferentes configurações de carga e produção. Foram testadas cargas resistivas, capacitivas e indutivas, além da variação da produção dos módulos fotovoltaicos, com a alteração da irradiância e temperatura. Também foi possível analisar a injeção de potência reativa pelo inversor fotovoltaico.
O controle droop desenvolvido mostrou-se eficaz para os cenários simulados, mantendo os níveis de frequência angular e magnitude de tensão na MR próximos aos desejados. Ocorreu um compartilhamento eficiente de potência ativa e reativa pelos inversores, independentemente da condição de carga e produção.
The strategy of droop control is one of the most studied when the subject is microgrids. This technique has some advantages, notably the effective power sharing and the absence of communication links between the inverters. This reduces complexity, improves system flexibility and redundancy, and facilitates expansion of microgrid capacity due to the plug-and-play feature. The general objective of this work is to analyze the droop control in an isolated microgrid, in single phase AC, with photovoltaic solar generation, in the Simulink computational tool of the MATLAB® software. The microgrid modeled in this study consists of three single-phase parallel inverters, which work together sharing the microgrid loads. Two inverters have batteries as power sources, to which droop control is applied. In turn, the third inverter has as its power source a row of photovoltaic modules, with the function of injecting power into the microgrid. In this sense, the third inverter does not participate in the droop control strategy, only maintains its usual control topology. The MATLAB® modeled and simulated microgrid corresponds to a system with effective voltage 230 V and frequency 50 Hz. The batteries used are 400 V and the row consists of 5 photovoltaic modules of 220 Wp each. The droop control is designed so that the angular frequency in the microgrid varies a maximum of 2% of the nominal value and the voltage magnitude varies a maximum of 5% of the nominal value. In order to validate the proposed control, the microgrid was simulated considering different load and production configurations. Resistive, capacitive and inductive loads were tested, as well as the photovoltaic modules production variation, with the irradiance and temperature changes. It was also possible to analyze the reactive power injection by the photovoltaic inverter. The developed droop control was effective for the simulated scenarios, keeping the angular frequency levels and voltage magnitude in the microgrid close to the desired ones. An efficient sharing of active and reactive power occurred by the inverters, regardless of the load and production condition.
The strategy of droop control is one of the most studied when the subject is microgrids. This technique has some advantages, notably the effective power sharing and the absence of communication links between the inverters. This reduces complexity, improves system flexibility and redundancy, and facilitates expansion of microgrid capacity due to the plug-and-play feature. The general objective of this work is to analyze the droop control in an isolated microgrid, in single phase AC, with photovoltaic solar generation, in the Simulink computational tool of the MATLAB® software. The microgrid modeled in this study consists of three single-phase parallel inverters, which work together sharing the microgrid loads. Two inverters have batteries as power sources, to which droop control is applied. In turn, the third inverter has as its power source a row of photovoltaic modules, with the function of injecting power into the microgrid. In this sense, the third inverter does not participate in the droop control strategy, only maintains its usual control topology. The MATLAB® modeled and simulated microgrid corresponds to a system with effective voltage 230 V and frequency 50 Hz. The batteries used are 400 V and the row consists of 5 photovoltaic modules of 220 Wp each. The droop control is designed so that the angular frequency in the microgrid varies a maximum of 2% of the nominal value and the voltage magnitude varies a maximum of 5% of the nominal value. In order to validate the proposed control, the microgrid was simulated considering different load and production configurations. Resistive, capacitive and inductive loads were tested, as well as the photovoltaic modules production variation, with the irradiance and temperature changes. It was also possible to analyze the reactive power injection by the photovoltaic inverter. The developed droop control was effective for the simulated scenarios, keeping the angular frequency levels and voltage magnitude in the microgrid close to the desired ones. An efficient sharing of active and reactive power occurred by the inverters, regardless of the load and production condition.
Description
Dupla diplomação com a UTFPR - Universidade Tecnológica Federal do Paraná
Keywords
Controle droop Controle primário Microrrede Geração fotovoltaica