Publication
Hybrid indoor localization system combining multilateration and fingerprinting
| dc.contributor.author | Oliveira, Leonardo Sestrem de | |
| dc.contributor.author | Rayel, Ohara | |
| dc.contributor.author | Leitão, Paulo | |
| dc.date.accessioned | 2023-03-06T15:43:10Z | |
| dc.date.available | 2023-03-06T15:43:10Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | Indoor localization systems enable object tracking, e.g., related to retail, logistics and mobile robotics during their life cycle. This paper describes a real-world scenario implementation, based on Bluetooth Low Energy (BLE) beacons, evaluating a hybrid indoor positioning system (H-IPS) that combines two RSSI-based approaches: Multilateration (MLT) and Fingerprinting (FP). In addition, a Kalman Filter (KF) was employed to decrease the positioning errors of both techniques. Furthermore a track-to-track fusion (TTF) is performed on the two KF outputs to maximize the performance. The results show that the accuracy of H-IPS overcomes the standalone FP in 21%, while the original MLT is outperformed in 52%. Finally, the proposed solution demonstrated a probability of error < 2 m of 80%, while the same probability for the FP and MLT were 56% and 20%, respectively. | pt_PT |
| dc.description.sponsorship | FCT – Fundação para a Ciência e Tecnologia within the Project Scope UIDB/05757/2020. | |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.citation | de Oliveira, Leonardo; Rayel, Ohara; Leitao, Paulo (2022). Hybrid indoor localization system combining multilatration and fingerprinting. In the 48th Annual Conference of the IEEE Industrial Electronics Society (IECON’22). Brussels. p. 1-6 | pt_PT |
| dc.identifier.doi | 10.1109/IECON49645.2022.9968816 | pt_PT |
| dc.identifier.uri | http://hdl.handle.net/10198/27495 | |
| dc.language.iso | eng | pt_PT |
| dc.peerreviewed | yes | pt_PT |
| dc.publisher | IEEE | pt_PT |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
| dc.subject | Fingerprinting | pt_PT |
| dc.subject | Multilateration | pt_PT |
| dc.subject | Indoor positioning system | pt_PT |
| dc.subject | Kalman filtering | pt_PT |
| dc.subject | Sensor fusion | pt_PT |
| dc.subject | Bluetooth low energy | pt_PT |
| dc.title | Hybrid indoor localization system combining multilateration and fingerprinting | pt_PT |
| dc.type | conference paper | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT | |
| oaire.citation.conferencePlace | Brussels | pt_PT |
| oaire.citation.endPage | 6 | pt_PT |
| oaire.citation.startPage | 1 | pt_PT |
| oaire.citation.title | the 48th Annual Conference of the IEEE Industrial Electronics Society (IECON’22) | pt_PT |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| person.familyName | Oliveira | |
| person.familyName | Leitão | |
| person.givenName | Leonardo Sestrem de | |
| person.givenName | Paulo | |
| person.identifier | A-8390-2011 | |
| person.identifier.ciencia-id | 6F18-DAD8-ACDC | |
| person.identifier.ciencia-id | 8316-8F13-DA71 | |
| person.identifier.orcid | 0000-0002-9344-3075 | |
| person.identifier.orcid | 0000-0002-2151-7944 | |
| person.identifier.scopus-author-id | 35584388900 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| rcaap.rights | restrictedAccess | pt_PT |
| rcaap.type | conferenceObject | pt_PT |
| relation.isAuthorOfPublication | d39f1e66-56e1-472d-8897-969476357c9b | |
| relation.isAuthorOfPublication | 68d9eb25-ad4f-439b-aeb2-35e8708644cc | |
| relation.isAuthorOfPublication.latestForDiscovery | d39f1e66-56e1-472d-8897-969476357c9b | |
| relation.isProjectOfPublication | 6e01ddc8-6a82-4131-bca6-84789fa234bd | |
| relation.isProjectOfPublication.latestForDiscovery | 6e01ddc8-6a82-4131-bca6-84789fa234bd |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 2022-IECON-Indoor_Localization_System.pdf
- Size:
- 1.94 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.75 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
