Repository logo
 
Publication

Hybrid indoor localization system combining multilateration and fingerprinting

dc.contributor.authorOliveira, Leonardo Sestrem de
dc.contributor.authorRayel, Ohara
dc.contributor.authorLeitão, Paulo
dc.date.accessioned2023-03-06T15:43:10Z
dc.date.available2023-03-06T15:43:10Z
dc.date.issued2022
dc.description.abstractIndoor localization systems enable object tracking, e.g., related to retail, logistics and mobile robotics during their life cycle. This paper describes a real-world scenario implementation, based on Bluetooth Low Energy (BLE) beacons, evaluating a hybrid indoor positioning system (H-IPS) that combines two RSSI-based approaches: Multilateration (MLT) and Fingerprinting (FP). In addition, a Kalman Filter (KF) was employed to decrease the positioning errors of both techniques. Furthermore a track-to-track fusion (TTF) is performed on the two KF outputs to maximize the performance. The results show that the accuracy of H-IPS overcomes the standalone FP in 21%, while the original MLT is outperformed in 52%. Finally, the proposed solution demonstrated a probability of error < 2 m of 80%, while the same probability for the FP and MLT were 56% and 20%, respectively.pt_PT
dc.description.sponsorshipFCT – Fundação para a Ciência e Tecnologia within the Project Scope UIDB/05757/2020.
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationde Oliveira, Leonardo; Rayel, Ohara; Leitao, Paulo (2022). Hybrid indoor localization system combining multilatration and fingerprinting. In the 48th Annual Conference of the IEEE Industrial Electronics Society (IECON’22). Brussels. p. 1-6pt_PT
dc.identifier.doi10.1109/IECON49645.2022.9968816pt_PT
dc.identifier.urihttp://hdl.handle.net/10198/27495
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectFingerprintingpt_PT
dc.subjectMultilaterationpt_PT
dc.subjectIndoor positioning systempt_PT
dc.subjectKalman filteringpt_PT
dc.subjectSensor fusionpt_PT
dc.subjectBluetooth low energypt_PT
dc.titleHybrid indoor localization system combining multilateration and fingerprintingpt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.citation.conferencePlaceBrusselspt_PT
oaire.citation.endPage6pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titlethe 48th Annual Conference of the IEEE Industrial Electronics Society (IECON’22)pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameOliveira
person.familyNameLeitão
person.givenNameLeonardo Sestrem de
person.givenNamePaulo
person.identifierA-8390-2011
person.identifier.ciencia-id6F18-DAD8-ACDC
person.identifier.ciencia-id8316-8F13-DA71
person.identifier.orcid0000-0002-9344-3075
person.identifier.orcid0000-0002-2151-7944
person.identifier.scopus-author-id35584388900
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationd39f1e66-56e1-472d-8897-969476357c9b
relation.isAuthorOfPublication68d9eb25-ad4f-439b-aeb2-35e8708644cc
relation.isAuthorOfPublication.latestForDiscoveryd39f1e66-56e1-472d-8897-969476357c9b
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2022-IECON-Indoor_Localization_System.pdf
Size:
1.94 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: