Repository logo
 
Publication

Fault identification in wind turbines: a data-centric machine learning approach

dc.contributor.authorPinna, Danielle
dc.contributor.authorToso, Rodrigo
dc.contributor.authorCoutinho, Rafaelli
dc.contributor.authorPereira, Ana I.
dc.contributor.authorBrandão, Diego
dc.date.accessioned2024-01-18T11:35:27Z
dc.date.available2024-01-18T11:35:27Z
dc.date.issued2022
dc.description.abstractThe last few years have been marked by the transition of the world energy matrix, predominantly with wind and solar sources considered clean energies. Wind turbines, responsible for the energy conversion process, are complex and expensive equipment susceptible to several failures due to multiple factors. Monitoring turbine components can assist in detecting failures before they occur, reducing equipment maintenance costs. This work compares machine learning techniques in a data-centric approach to wind turbine failure detection. Preliminary results demonstrate the importance of feature selection in this problem.pt_PT
dc.description.sponsorshipThis work has been supported by FCT - Fundação para a Ciência e a Tecnologia within the RD Units Project Scope Research Center in Digitalization and Intelligent Robotics (CeDRI) UIDB/05757/2020 and UIDP/05757/2020 and SusTEC (LA/P/0007/2021). The authors would like to thank the following Brazilian Agencies CAPES, CNPq, and FAPERJ.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationPinna, Danielle; Toso, Rodrigo; Coutinho, Rafaelli; Pereira, Ana I.; Brandão, Diego (2022). Fault identification in wind turbines: a data-centric machine learning approach. In 2022 International Conference on Computational Science and Computational Intelligence (CSCI). p. 565-568. ISBN 979-8-3503-2028-2pt_PT
dc.identifier.doi10.1109/CSCI58124.2022.00106pt_PT
dc.identifier.isbn979-8-3503-2028-2
dc.identifier.urihttp://hdl.handle.net/10198/29263
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.relationLA/P/0007/2021pt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectWind turbinept_PT
dc.subjectMachine learningpt_PT
dc.subjectFault classificationpt_PT
dc.titleFault identification in wind turbines: a data-centric machine learning approachpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.citation.endPage568pt_PT
oaire.citation.startPage565pt_PT
oaire.citation.title2022 International Conference on Computational Science and Computational Intelligence (CSCI)pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNamePereira
person.givenNameAna I.
person.identifier.ciencia-id0716-B7C2-93E4
person.identifier.orcid0000-0003-3803-2043
person.identifier.ridF-3168-2010
person.identifier.scopus-author-id15071961600
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicatione9981d62-2a2b-4fef-b75e-c2a14b0e7846
relation.isAuthorOfPublication.latestForDiscoverye9981d62-2a2b-4fef-b75e-c2a14b0e7846
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Fault_Identification_in_Wind_Turbines.pdf
Size:
199.47 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: