Repository logo
 
No Thumbnail Available
Publication

Extracting temporal patterns from smart city data

Use this identifier to reference this record.
Name:Description:Size:Format: 
Regina Gubareva.pdf3.43 MBAdobe PDF Download

Abstract(s)

In the modern world data and information become a powerful instrument of management, business, safety, medicine and others. The most fashionable sciences are the sciences which allow us to extract valuable knowledge from big volumes of information. Novel data processing techniques remains a trend for the last five years, in a way that continues to provide interesting results. This paper investigates the algorithms and approaches for processing smart city data, in particular, water consumption data for the city of Bragança, Portugal. Data from the last seven years was processed according to a rigorous methodology, that includes five stages: cleaning, preparation, exploratory analysis, identification of patterns and critical interpretation of the results. After understanding the data and choosing the best algorithms, a web-based data visualizing tools was developed, providing dashboards to geospatial data representation, useful in the decision making of municipalities.
В современном мире данные и информация стали одним из самых мощных инстру- ментов в управлении, бизнесе, безопасности, медицине, науке и социальной сфере. Са- мыми модными и востребованными науками в настоящий момент являются науки, поз- воляющие извлекать полезные знания из больших объемов информации. Новые методы обработки данных остаются тенденцией последних пяти лет и продолжают генерировать интересные результаты. В данной работе исследуются алгоритмы и подходы для обработ-ки данных "умного города", в частности, данных о потреблении воды в городе Браганса, Португалия. Данные за последние семь лет обрабатывались в соответствии со строгой методологией, включающей пять этапов: очистка, подготовка, исследовательский анализ, выявление закономерностей и критическая интерпретация результатов. Цель исследова-ниия - определение шаблонов поведения в потрблении воды связанных с определенными событиями и построение модели прогнозова на основе найденных закономерностей. В результате исчерпывающего анализа с помощью множества методов было установлено отсутствие систематических зависимостей в рассматриваемом типе данных. На заключи-тельном этапе был создан инструмент визуализации данных, обеспечивающий динами-ческие панели для представления аналитических данных о распределении потребления. Разработанный инструмент управления аналитикой полезен для принятия решений му-ниципалитетом.

Description

Mestrado de dupla diplomação com a DULAY UNIVERSITY

Keywords

Data analysis Clustering Big data Dater consumption

Citation

Research Projects

Organizational Units

Journal Issue