Name: | Description: | Size: | Format: | |
---|---|---|---|---|
2.97 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Os sistemas clássicos de dissipação de energia baseiam-se na utilização de dispositivos
passivos (e.g., isoladores, amortecedores viscosos, etc.) que armazenam /dissipam energia
apenas com atuação mecânica e sem qualquer tipo de sistema de controlo. Estes
sistemas são mais comuns por serem simples e baixo custo. O aparecimento de novos
materiais potenciou a investigação de novos dispositivos de controlo que são mais eficientes.
Neste contexto, este trabalho pretende-se projetar um novo tipo de amortecedor
magnético para dissipação de vibrações mecânicas. O amortecedor é composto por um
conjunto de ímanes permanentes de neodímio (NdFeB) que serão colocados no interior de
um tubo de cobre. Esta configuração permite aproveitar as correntes elétricas que são induzidas
no condutor pela variação do fluxo do campo magnético (correntes de Eddy) para
reduzir o movimento dos ímanes através do chamado amortecimento magnético. Numa
primeira fase será construído um modelo experimental projetado para satisfazer especificações
pré-defnidas, nomeadamente a capacidade de amortecimento, o nível máximo de
carga e curso do amortecedor.
The classical energy dissipation systems are based on the use of passive devices (e.g., isolators, viscous dampers, etc.) that store / dissipate energy only with mechanical operations and without any type of control system. These systems are the most common ones because they are simple and present a low cost. The appearance of new materials potentiate the research and development of new monitoring devices which are more e cient. In this context, this work aims to design a new type of magnetic damper to dissipate mechanical vibration. The damper comprises a set of permanent neodymium magnets (NdFeB) to be placed inside a copper tube. This con guration allows seizing electrical currents that are induced in the conductor by varying the ow of the magnetic eld (eddy currents) to reduce the movement of magnets via so-called magnetic damping. First we will be built an experimental model designed to meet pre-de ned speci cations, including the damping capacity, maximum load and shock stroke. Based on the experimental results we will developed a numerical model to simulate the behavior of dissipative device. Then the damper prototype will be tested for their behavior when exposed to various mechanical excitations. Finally, they will be presented the main conclusions and proposed future research lines for the continuation of this study.
The classical energy dissipation systems are based on the use of passive devices (e.g., isolators, viscous dampers, etc.) that store / dissipate energy only with mechanical operations and without any type of control system. These systems are the most common ones because they are simple and present a low cost. The appearance of new materials potentiate the research and development of new monitoring devices which are more e cient. In this context, this work aims to design a new type of magnetic damper to dissipate mechanical vibration. The damper comprises a set of permanent neodymium magnets (NdFeB) to be placed inside a copper tube. This con guration allows seizing electrical currents that are induced in the conductor by varying the ow of the magnetic eld (eddy currents) to reduce the movement of magnets via so-called magnetic damping. First we will be built an experimental model designed to meet pre-de ned speci cations, including the damping capacity, maximum load and shock stroke. Based on the experimental results we will developed a numerical model to simulate the behavior of dissipative device. Then the damper prototype will be tested for their behavior when exposed to various mechanical excitations. Finally, they will be presented the main conclusions and proposed future research lines for the continuation of this study.
Description
Keywords
Amortecedor-magnético Correntes-de-Eddy Ímanes-permanentes