Repository logo
 
Publication

Fault Classification of Wind Turbine: A Comparison of Hyperparameter Optimization Methods

dc.contributor.authorPinna, Danielle
dc.contributor.authorToso, Rodrigo
dc.contributor.authorSemaan, Gustavo
dc.contributor.authorSá, Fernando de
dc.contributor.authorPereira, Ana I.
dc.contributor.authorFerreira, Ângela P.
dc.contributor.authorSoares, Jorge
dc.contributor.authorBrandão, Diego
dc.date.accessioned2024-10-08T13:57:20Z
dc.date.available2024-10-08T13:57:20Z
dc.date.issued2024
dc.description.abstractThe last few years have been marked by the insertion of renewable technologies in the global energy matrix, such as wind and solar energy, which are considered clean energies with low environmental impact. Wind turbines, responsible for the energy conversion process, are complex equipment that are expensive and susceptible to numerous failures. Monitoring turbine components can help detect failures before they occur, reducing equipment maintenance costs. This work compares the training time of different techniques for tuning hyperparameters in supervised machine-learning models for fault detection in wind turbines. Results show the importance of data optimization during model training.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationPinna, Danielle; Toso, Rodrigo; Semaan, Gustavo; Sá, Fernando de; Pereira, Ana I.; Ferreira, Ângela; Soares, Jorge; Brandão, Diego (2024). Fault Classification of Wind Turbine: A Comparison of Hyperparameter Optimization Methods. In 3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023). Cham: Springer Nature, Vol. 2, p. 229–243. ISBN 978-3-031-53035-7pt_PT
dc.identifier.doi10.1007/978-3-031-53036-4_16pt_PT
dc.identifier.isbn978-3-031-53035-7
dc.identifier.isbn978-3-031-53036-4
dc.identifier.urihttp://hdl.handle.net/10198/30377
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer Naturept_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectWind turbinept_PT
dc.subjectMachine learningpt_PT
dc.subjectFault classificationpt_PT
dc.titleFault Classification of Wind Turbine: A Comparison of Hyperparameter Optimization Methodspt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.endPage243pt_PT
oaire.citation.startPage229pt_PT
oaire.citation.title3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023)pt_PT
person.familyNamePereira
person.familyNameFerreira
person.givenNameAna I.
person.givenNameÂngela P.
person.identifier.ciencia-id0716-B7C2-93E4
person.identifier.ciencia-id2211-6787-D936
person.identifier.orcid0000-0003-3803-2043
person.identifier.orcid0000-0002-1912-2556
person.identifier.ridF-3168-2010
person.identifier.ridM-8188-2013
person.identifier.scopus-author-id15071961600
person.identifier.scopus-author-id55516840300
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicatione9981d62-2a2b-4fef-b75e-c2a14b0e7846
relation.isAuthorOfPublication3fec941d-79fb-4901-918d-a34ffa0195cc
relation.isAuthorOfPublication.latestForDiscoverye9981d62-2a2b-4fef-b75e-c2a14b0e7846

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Fault Classification of Wind Turbine.pdf
Size:
908.69 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: