Repository logo
 
Publication

A hybrid approach GABC-LS to solve mTSP

dc.contributor.authorPereira, Sílvia de Castro
dc.contributor.authorPires, Eduardo J. Solteiro
dc.contributor.authorOliveira, Paulo B. de Moura
dc.date.accessioned2023-02-27T12:12:47Z
dc.date.available2023-02-27T12:12:47Z
dc.date.issued2022
dc.description.abstractThe Multiple Traveling Salesman Problem (mTSP) is an interesting combinatorial optimization problem due to its numerous real-life applications. It is a problem where m salesmen visit a set of n cities so that each city is visited once. The primary purpose is to minimize the total distance traveled by all salesmen. This paper presents a hybrid approach called GABC-LS that combines an evolutionary algorithm with the swarm intelligence optimization ideas and a local search method. The proposed approach was tested on two instances and produced some better results than the best-known solutions reported in the literature.pt_PT
dc.description.versioninfo:eu-repo/semantics/acceptedVersionpt_PT
dc.identifier.citationPereira, Sílvia de Castro; Pires, Eduardo J. Solteiro; Oliveira, Paulo B. de Moura (2022). A hybrid approach GABC-LS to solve mTSP. In International Conference on Optimization, Learning Algorithms and Applications OL2A. p. 1-13. ISBN 978-3-031-23236-7pt_PT
dc.identifier.doi10.1007/978-3-031-23236-7_36pt_PT
dc.identifier.isbn978-3-031-23236-7
dc.identifier.issn1865-0929
dc.identifier.urihttp://hdl.handle.net/10198/27224
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringerpt_PT
dc.relationINESC TEC- Institute for Systems and Computer Engineering, Technology and Science
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectMultiple traveling salesman problempt_PT
dc.subjectGenetic algorithmpt_PT
dc.subjectArtificial bee colonypt_PT
dc.subjectLocal searchpt_PT
dc.titleA hybrid approach GABC-LS to solve mTSPpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleINESC TEC- Institute for Systems and Computer Engineering, Technology and Science
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50014%2F2020/PT
oaire.citation.conferencePlacePóvoa de Varzimpt_PT
oaire.citation.endPage13pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleOL2A: International Conference on Optimization, Learning Algorithms and Applications 2022pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNamede Castro Pereira
person.givenNameSílvia
person.identifier.ciencia-idFF13-0CFA-02E3
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication9e4fc9ce-02bf-4e38-946d-f950108753c4
relation.isAuthorOfPublication.latestForDiscovery9e4fc9ce-02bf-4e38-946d-f950108753c4
relation.isProjectOfPublication2957d2e8-0cce-46ca-8e0e-d15ccf4f290e
relation.isProjectOfPublication.latestForDiscovery2957d2e8-0cce-46ca-8e0e-d15ccf4f290e

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
OL2A_2022_FINAL.pdf
Size:
416.2 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: