Publication
A hybrid approach GABC-LS to solve mTSP
dc.contributor.author | Pereira, Sílvia de Castro | |
dc.contributor.author | Pires, Eduardo J. Solteiro | |
dc.contributor.author | Oliveira, Paulo B. de Moura | |
dc.date.accessioned | 2023-02-27T12:12:47Z | |
dc.date.available | 2023-02-27T12:12:47Z | |
dc.date.issued | 2022 | |
dc.description.abstract | The Multiple Traveling Salesman Problem (mTSP) is an interesting combinatorial optimization problem due to its numerous real-life applications. It is a problem where m salesmen visit a set of n cities so that each city is visited once. The primary purpose is to minimize the total distance traveled by all salesmen. This paper presents a hybrid approach called GABC-LS that combines an evolutionary algorithm with the swarm intelligence optimization ideas and a local search method. The proposed approach was tested on two instances and produced some better results than the best-known solutions reported in the literature. | pt_PT |
dc.description.version | info:eu-repo/semantics/acceptedVersion | pt_PT |
dc.identifier.citation | Pereira, Sílvia de Castro; Pires, Eduardo J. Solteiro; Oliveira, Paulo B. de Moura (2022). A hybrid approach GABC-LS to solve mTSP. In International Conference on Optimization, Learning Algorithms and Applications OL2A. p. 1-13. ISBN 978-3-031-23236-7 | pt_PT |
dc.identifier.doi | 10.1007/978-3-031-23236-7_36 | pt_PT |
dc.identifier.isbn | 978-3-031-23236-7 | |
dc.identifier.issn | 1865-0929 | |
dc.identifier.uri | http://hdl.handle.net/10198/27224 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | Springer | pt_PT |
dc.relation | INESC TEC- Institute for Systems and Computer Engineering, Technology and Science | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Multiple traveling salesman problem | pt_PT |
dc.subject | Genetic algorithm | pt_PT |
dc.subject | Artificial bee colony | pt_PT |
dc.subject | Local search | pt_PT |
dc.title | A hybrid approach GABC-LS to solve mTSP | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardTitle | INESC TEC- Institute for Systems and Computer Engineering, Technology and Science | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50014%2F2020/PT | |
oaire.citation.conferencePlace | Póvoa de Varzim | pt_PT |
oaire.citation.endPage | 13 | pt_PT |
oaire.citation.startPage | 1 | pt_PT |
oaire.citation.title | OL2A: International Conference on Optimization, Learning Algorithms and Applications 2022 | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | de Castro Pereira | |
person.givenName | Sílvia | |
person.identifier.ciencia-id | FF13-0CFA-02E3 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | restrictedAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 9e4fc9ce-02bf-4e38-946d-f950108753c4 | |
relation.isAuthorOfPublication.latestForDiscovery | 9e4fc9ce-02bf-4e38-946d-f950108753c4 | |
relation.isProjectOfPublication | 2957d2e8-0cce-46ca-8e0e-d15ccf4f290e | |
relation.isProjectOfPublication.latestForDiscovery | 2957d2e8-0cce-46ca-8e0e-d15ccf4f290e |