Publication
Deep Learning-Based Classification and Quantification of Emulsion Droplets: A YOLOv7 Approach
| dc.contributor.author | Mendes, João | |
| dc.contributor.author | Silva, Adriano S. | |
| dc.contributor.author | Roman, Fernanda | |
| dc.contributor.author | Díaz de Tuesta, Jose Luis | |
| dc.contributor.author | Lima, José | |
| dc.contributor.author | Gomes, Helder | |
| dc.contributor.author | Pereira, Ana I. | |
| dc.date.accessioned | 2024-10-08T14:22:49Z | |
| dc.date.available | 2024-10-08T14:22:49Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | This study focuses on the analysis of emulsion pictures to understand important parameters. While droplet size is a key parameter in emulsion science, manual procedures have been the traditional approach for its determination. Here we introduced the application of YOLOv7, a recently launched deep-learning model, for classifying emulsion droplets. A comparison was made between the two methods for calculating droplet size distribution. One of the methods, combined with YOLOv7, achieved 97.26% accuracy. These results highlight the potential of sophisticated image-processing techniques, particularly deep learning, in chemistry-related topics. The study anticipates further exploration of deep learning tools in other chemistry-related fields, emphasizing their potential for achieving satisfactory performance. | pt_PT |
| dc.description.sponsorship | This work has been supported by FCT - Funda¸c˜ao para a Ciiência e Tecnologia within the R&D Units Project Scope: UIDB/05757/2020, UIDP/05757/2020, UIDB/00690/2020, UIDB/50020/2020, and UIDB/00319/2020. Adriano Silva was supported by Doctoral Grant SFRH/BD/151346/2021 financed by the Portuguese Foundation for Science and Technology (FCT), and with funds from NORTE 2020, under MIT Portugal Program. Fernanda F. Roman was supported by FCT and FSE with the PhD research grant SFRH/BD/143 224/2019. | pt_PT |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.citation | Mendes, João; Silva, Adriano S.; Roman, Fernanda F.; Tuesta, Jose L. Diaz de; Lima, José; Gomes, Helder T.; Pereira, Ana I. (2024). Deep Learning-Based Classification and Quantification of Emulsion Droplets: A YOLOv7 Approach. In 3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023). Cham: Springer Nature, Vol. 2, p. 148–163. ISBN 978-3-031-53035-7 | pt_PT |
| dc.identifier.doi | 10.1007/978-3-031-53036-4_11 | pt_PT |
| dc.identifier.isbn | 978-3-031-53035-7 | |
| dc.identifier.isbn | 978-3-031-53036-4 | |
| dc.identifier.uri | http://hdl.handle.net/10198/30379 | |
| dc.language.iso | eng | pt_PT |
| dc.peerreviewed | yes | pt_PT |
| dc.publisher | Springer Nature | pt_PT |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Mountain Research Center | |
| dc.relation | Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials | |
| dc.relation | ALGORITMI Research Center | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
| dc.subject | YOLOv7 | pt_PT |
| dc.subject | Image processing | pt_PT |
| dc.subject | Learning method | pt_PT |
| dc.title | Deep Learning-Based Classification and Quantification of Emulsion Droplets: A YOLOv7 Approach | pt_PT |
| dc.type | conference paper | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Mountain Research Center | |
| oaire.awardTitle | Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials | |
| oaire.awardTitle | ALGORITMI Research Center | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00690%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50020%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00319%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT//SFRH%2FBD%2F143224%2F2019/PT | |
| oaire.citation.endPage | 163 | pt_PT |
| oaire.citation.startPage | 148 | pt_PT |
| oaire.citation.title | 3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023) | pt_PT |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| person.familyName | Mendes | |
| person.familyName | Silva | |
| person.familyName | Roman | |
| person.familyName | Lima | |
| person.familyName | Gomes | |
| person.familyName | Pereira | |
| person.givenName | João | |
| person.givenName | Adriano S. | |
| person.givenName | Fernanda | |
| person.givenName | José | |
| person.givenName | Helder | |
| person.givenName | Ana I. | |
| person.identifier | 2726655 | |
| person.identifier | R-000-8GD | |
| person.identifier.ciencia-id | EA1F-844D-6BA9 | |
| person.identifier.ciencia-id | 3E14-5049-B09D | |
| person.identifier.ciencia-id | EE1B-DAA7-D0BD | |
| person.identifier.ciencia-id | 6016-C902-86A9 | |
| person.identifier.ciencia-id | 6218-1E19-13EE | |
| person.identifier.ciencia-id | 0716-B7C2-93E4 | |
| person.identifier.orcid | 0000-0003-0979-8314 | |
| person.identifier.orcid | 0000-0002-6795-2335 | |
| person.identifier.orcid | 0000-0001-5360-5298 | |
| person.identifier.orcid | 0000-0001-7902-1207 | |
| person.identifier.orcid | 0000-0001-6898-2408 | |
| person.identifier.orcid | 0000-0003-3803-2043 | |
| person.identifier.rid | L-3370-2014 | |
| person.identifier.rid | F-3168-2010 | |
| person.identifier.scopus-author-id | 57225794972 | |
| person.identifier.scopus-author-id | 55851941311 | |
| person.identifier.scopus-author-id | 15071961600 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| rcaap.rights | restrictedAccess | pt_PT |
| rcaap.type | conferenceObject | pt_PT |
| relation.isAuthorOfPublication | b5c9de22-cf9e-47b8-b7a4-26e08fb12b28 | |
| relation.isAuthorOfPublication | 3ba90ba4-aac8-4892-a30f-25a10bc27298 | |
| relation.isAuthorOfPublication | c145030b-c811-4be4-b6af-1926e364cb33 | |
| relation.isAuthorOfPublication | d88c2b2a-efc2-48ef-b1fd-1145475e0055 | |
| relation.isAuthorOfPublication | 0eb96337-224a-4339-9918-334436fbbb99 | |
| relation.isAuthorOfPublication | e9981d62-2a2b-4fef-b75e-c2a14b0e7846 | |
| relation.isAuthorOfPublication.latestForDiscovery | 0eb96337-224a-4339-9918-334436fbbb99 | |
| relation.isProjectOfPublication | 6e01ddc8-6a82-4131-bca6-84789fa234bd | |
| relation.isProjectOfPublication | d0a17270-80a8-4985-9644-a04c2a9f2dff | |
| relation.isProjectOfPublication | 29718e93-4989-42bb-bcbc-4daff3870b25 | |
| relation.isProjectOfPublication | 79ed495f-40dc-45d0-b98c-7e777db59e9b | |
| relation.isProjectOfPublication | 0d98f999-8fd3-46a8-8a71-a7ff478a1207 | |
| relation.isProjectOfPublication | 305d1b2e-e9ef-4d67-ba7d-4a5ab793f567 | |
| relation.isProjectOfPublication.latestForDiscovery | 6e01ddc8-6a82-4131-bca6-84789fa234bd |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Deep Learning-Based Classification.pdf
- Size:
- 2.98 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.75 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
