Publication
Optimizing Olive Disease Classification Through Hybrid Machine Learning and Deep Learning Techniques
datacite.subject.fos | Ciências Agrárias::Agricultura, Silvicultura e Pescas | |
datacite.subject.sdg | 03:Saúde de Qualidade | |
dc.contributor.author | Mendes, João | |
dc.contributor.author | Moso, Juliet | |
dc.contributor.author | Berger, Guido | |
dc.contributor.author | Lima, José | |
dc.contributor.author | Costa, Lino | |
dc.contributor.author | Guessoum, Zahia | |
dc.contributor.author | Pereira, Ana I. | |
dc.date.accessioned | 2025-04-23T10:22:56Z | |
dc.date.available | 2025-04-23T10:22:56Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Olive trees play a crucial role in the global agricultural landscape, serving as a primary source of olive oil production. However, olive trees are susceptible to several diseases, which can significantly impact yield and quality. This study addresses the challenge of improving the diagnosis of diseases in olive trees, specifically focusing on aculus olearius and Olive Peacock Spot diseases. Using a novel hybrid approach that combines deep learning and machine learning methodologies, the authors aimed to optimize disease classification accuracy by analyzing images of olive leaves. The presented methodology integrates Local Binary Patterns (LBP) and an adapted ResNet50 model for feature extraction, followed by classification through optimized machine learning models, including Stochastic Gradient Descent (SGD), Support Vector Machine (SVM), and Random Forest (RF). The results demonstrated that the hybrid model achieved a groundbreaking accuracy of 99.11%, outperforming existing models. This advancement underscores the potential of integrated technological approaches in agricultural disease management and sets a new benchmark for the early and accurate detection of foliar diseases. | eng |
dc.description.sponsorship | The cooperation was supported by the HORIZON-WIDERA- 2021-ACCESS-03-01 STEP - STEM Research and Equality, Diversity and Inclusion Project, under Grant Agreement No. 101078933. The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020), ALGORITMI (UIDB/00319/2020) and SusTEC (LA /P/0007/2021). | |
dc.identifier.citation | Mendes, João; Moso, Juliet; Szekir Berger, Guido; Lima, José; Costa, Lino; Guessoum, Zahia; Pereira, Ana I. (2024). Optimizing Olive Disease Classification Through Hybrid Machine Learning and Deep Learning Techniques. In Optimization, Learning Algorithms and Applications (OL2A 2024), Part I. Cham: Springer Nature. p. 157- 172. eISBN 978-3-031-77426-3 | |
dc.identifier.doi | 10.1007/978-3-031-77426-3_11 | |
dc.identifier.isbn | 9783031774256 | |
dc.identifier.isbn | 9783031774263 | |
dc.identifier.uri | http://hdl.handle.net/10198/34427 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | Springer Nature | |
dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
dc.relation | ALGORITMI Research Center | |
dc.relation.ispartof | Communications in Computer and Information Science | |
dc.relation.ispartof | Optimization, Learning Algorithms and Applications | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Optimization | |
dc.subject | Hybrid Model | |
dc.subject | Machine Learning | |
dc.subject | Deep Learning | |
dc.subject | Olive Disease | |
dc.subject | Olive Leaves | |
dc.title | Optimizing Olive Disease Classification Through Hybrid Machine Learning and Deep Learning Techniques | eng |
dc.type | conference paper | |
dspace.entity.type | Publication | |
oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
oaire.awardTitle | ALGORITMI Research Center | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00319%2F2020/PT | |
oaire.citation.endPage | 172 | |
oaire.citation.startPage | 157 | |
oaire.citation.title | 4th International Conference on Optimization, Learning Algorithms and Applications, OL2A 2024 | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
person.familyName | Mendes | |
person.familyName | Berger | |
person.familyName | Lima | |
person.familyName | Pereira | |
person.givenName | João | |
person.givenName | Guido | |
person.givenName | José | |
person.givenName | Ana I. | |
person.identifier | 2726655 | |
person.identifier | R-000-8GD | |
person.identifier.ciencia-id | EA1F-844D-6BA9 | |
person.identifier.ciencia-id | 931A-887B-D75D | |
person.identifier.ciencia-id | 6016-C902-86A9 | |
person.identifier.ciencia-id | 0716-B7C2-93E4 | |
person.identifier.orcid | 0000-0003-0979-8314 | |
person.identifier.orcid | 0000-0002-4100-1494 | |
person.identifier.orcid | 0000-0001-7902-1207 | |
person.identifier.orcid | 0000-0003-3803-2043 | |
person.identifier.rid | L-3370-2014 | |
person.identifier.rid | F-3168-2010 | |
person.identifier.scopus-author-id | 57225794972 | |
person.identifier.scopus-author-id | 55851941311 | |
person.identifier.scopus-author-id | 15071961600 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
relation.isAuthorOfPublication | b5c9de22-cf9e-47b8-b7a4-26e08fb12b28 | |
relation.isAuthorOfPublication | af502b94-c812-4efb-abb5-4d61a678a06b | |
relation.isAuthorOfPublication | d88c2b2a-efc2-48ef-b1fd-1145475e0055 | |
relation.isAuthorOfPublication | e9981d62-2a2b-4fef-b75e-c2a14b0e7846 | |
relation.isAuthorOfPublication.latestForDiscovery | b5c9de22-cf9e-47b8-b7a4-26e08fb12b28 | |
relation.isProjectOfPublication | 6e01ddc8-6a82-4131-bca6-84789fa234bd | |
relation.isProjectOfPublication | d0a17270-80a8-4985-9644-a04c2a9f2dff | |
relation.isProjectOfPublication | 0d98f999-8fd3-46a8-8a71-a7ff478a1207 | |
relation.isProjectOfPublication.latestForDiscovery | 6e01ddc8-6a82-4131-bca6-84789fa234bd |