Repository logo
 
Publication

Anosov diffeomorphisms, renormalization and tilings

dc.contributor.advisorPinto, Alberto A.
dc.contributor.authorAlmeida, João P.
dc.date.accessioned2014-11-06T09:14:13Z
dc.date.available2014-11-06T09:14:13Z
dc.date.issued2012
dc.description.abstractIn this thesis, we prove a one-to-one correspondence between C^{1+} smooth conjugacy classes of circle diffeomorphisms that are C^{1+} fixed points of renormalization and C^{1+} conjugacy classes of Anosov diffeomorphisms whose Sinai-Ruelle-Bowen measure is absolutely continuous with respect to Lebesgue measure. Furthermore, we use ratio functions to parametrize the infinite dimensional space of C^{1+} smooth conjugacy classes of circle diffeomorphisms that are C^{1+} fixed points of renormalization. We introduce the notion of γ-tilings and we prove a one-to-one correspondence between (i) smooth conjugacy classes of Anosov diffeomorphisms, with an invariant measure absolutely continuous with respect to the Lebesgue measure, (ii) affine classes of γ-tilings and (iii) solenoid functions. The solenoid functions give a parametrization of the infinite dimensional space consisting of the mathematical objects described in the above equivalences.por
dc.identifier.tid101350066
dc.identifier.urihttp://hdl.handle.net/10198/11344
dc.language.isoengpor
dc.subjectMathematics
dc.subjectDynamical systems
dc.titleAnosov diffeomorphisms, renormalization and tilingspor
dc.typedoctoral thesis
dspace.entity.typePublication
person.familyNameAlmeida
person.givenNameJoão P.
person.identifierR-000-K6T
person.identifier.ciencia-id1C14-D6B1-6A78
person.identifier.orcid0000-0002-1286-2527
person.identifier.ridN-8243-2013
person.identifier.scopus-author-id54956738400
rcaap.rightsopenAccesspor
rcaap.typedoctoralThesispor
relation.isAuthorOfPublicationd51506e1-376c-4c70-b68b-f527b54440d2
relation.isAuthorOfPublication.latestForDiscoveryd51506e1-376c-4c70-b68b-f527b54440d2
thesis.degree.disciplineMatemáticapor
thesis.degree.levelDoutoramento em Matemática Aplicadapor

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
JPA_PhD_Final.pdf
Size:
568.77 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: