Repository logo
 
Publication

Cold-start and data sparsity problems in a digital twin based recommendation system

dc.contributor.authorPires, Flávia
dc.contributor.authorMoreira, António Paulo
dc.contributor.authorLeitão, Paulo
dc.date.accessioned2024-12-13T16:57:53Z
dc.date.available2024-12-13T16:57:53Z
dc.date.issued2024
dc.description.abstractThe emergence of Digital Twins (DT) in Industry 4.0 has enabled the decision support systems taking advantage of more effective recommendation systems (RS). Despite the RS’s growing popularity and ability to support decision-makers, these face two significant challenges, cold-start and data sparsity, which limits the system’s capability to provide effective and accurate decision support. This paper aims to address these issues by conducting a literature review, analysing the current research landscape, and identifying the main enabling methods, algorithms, and similarity measures to mitigate these challenges. The performed analysis enables the point out of future research directions for developing effective and accurate RS that empower decision-makers.pt_PT
dc.description.sponsorshipThis work was supported by national funds through FCT/MCTES (PIDDAC): CeDRI, UIDB/05757/2020 (DOI: 10.54499/UIDB/05757/2020) and UIDP/05757/2020 (DOI:10.54499/UIDP/05757/2020); and SusTEC, LA/P/0007/2020 (DOI:10.54499/LA/P/0007/2020). The author Flavia Pires thanks the FCT Portugal for the PhD Grant SFRH/BD/143243/2019.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationPires, Flávia; Moreira, António Paulo; Leitao, Paulo (2024). Cold-start and data sparsity problems in a digital twin based recommendation system. In 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA). Padova: IEEE, p. 1-8. ISBN 979-8-3503-6123-0.pt_PT
dc.identifier.doi10.1109/ETFA61755.2024.10711105pt_PT
dc.identifier.isbn979-8-3503-6123-0
dc.identifier.urihttp://hdl.handle.net/10198/30731
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
dc.relationAn Intelligent Decision Support Approach for Industrial Digital Twin
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectDigital Twinpt_PT
dc.subjectCold-Startpt_PT
dc.subjectData Sparsitypt_PT
dc.titleCold-start and data sparsity problems in a digital twin based recommendation systempt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
oaire.awardTitleAn Intelligent Decision Support Approach for Industrial Digital Twin
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/POR_NORTE/SFRH%2FBD%2F143243%2F2019/PT
oaire.citation.endPage8pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.title2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA)pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStreamPOR_NORTE
person.familyNamePires
person.familyNameLeitão
person.givenNameFlávia
person.givenNamePaulo
person.identifierhttps://scholar.google.pt/citations?user=an9quSsAAAAJ&hl=pt-PT
person.identifierA-8390-2011
person.identifier.ciencia-idA119-72AB-6255
person.identifier.ciencia-id8316-8F13-DA71
person.identifier.orcid0000-0001-7899-3020
person.identifier.orcid0000-0002-2151-7944
person.identifier.scopus-author-id57200412919
person.identifier.scopus-author-id35584388900
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication3ac8f73e-ecb2-44b6-9c6f-1ee99474e00f
relation.isAuthorOfPublication68d9eb25-ad4f-439b-aeb2-35e8708644cc
relation.isAuthorOfPublication.latestForDiscovery68d9eb25-ad4f-439b-aeb2-35e8708644cc
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication6255046e-bc79-4b82-8884-8b52074b4384
relation.isProjectOfPublicatione2e5e121-f56c-481a-980a-dcb4d852e27b
relation.isProjectOfPublication.latestForDiscoveryd0a17270-80a8-4985-9644-a04c2a9f2dff

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cold-Start and Data.pdf
Size:
956 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: