Publication
Cold-start and data sparsity problems in a digital twin based recommendation system
| dc.contributor.author | Pires, Flávia | |
| dc.contributor.author | Moreira, António Paulo | |
| dc.contributor.author | Leitão, Paulo | |
| dc.date.accessioned | 2024-12-13T16:57:53Z | |
| dc.date.available | 2024-12-13T16:57:53Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | The emergence of Digital Twins (DT) in Industry 4.0 has enabled the decision support systems taking advantage of more effective recommendation systems (RS). Despite the RS’s growing popularity and ability to support decision-makers, these face two significant challenges, cold-start and data sparsity, which limits the system’s capability to provide effective and accurate decision support. This paper aims to address these issues by conducting a literature review, analysing the current research landscape, and identifying the main enabling methods, algorithms, and similarity measures to mitigate these challenges. The performed analysis enables the point out of future research directions for developing effective and accurate RS that empower decision-makers. | pt_PT |
| dc.description.sponsorship | This work was supported by national funds through FCT/MCTES (PIDDAC): CeDRI, UIDB/05757/2020 (DOI: 10.54499/UIDB/05757/2020) and UIDP/05757/2020 (DOI:10.54499/UIDP/05757/2020); and SusTEC, LA/P/0007/2020 (DOI:10.54499/LA/P/0007/2020). The author Flavia Pires thanks the FCT Portugal for the PhD Grant SFRH/BD/143243/2019. | pt_PT |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.citation | Pires, Flávia; Moreira, António Paulo; Leitao, Paulo (2024). Cold-start and data sparsity problems in a digital twin based recommendation system. In 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA). Padova: IEEE, p. 1-8. ISBN 979-8-3503-6123-0. | pt_PT |
| dc.identifier.doi | 10.1109/ETFA61755.2024.10711105 | pt_PT |
| dc.identifier.isbn | 979-8-3503-6123-0 | |
| dc.identifier.uri | http://hdl.handle.net/10198/30731 | |
| dc.language.iso | eng | pt_PT |
| dc.peerreviewed | yes | pt_PT |
| dc.publisher | IEEE | pt_PT |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| dc.relation | An Intelligent Decision Support Approach for Industrial Digital Twin | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
| dc.subject | Digital Twin | pt_PT |
| dc.subject | Cold-Start | pt_PT |
| dc.subject | Data Sparsity | pt_PT |
| dc.title | Cold-start and data sparsity problems in a digital twin based recommendation system | pt_PT |
| dc.type | conference paper | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| oaire.awardTitle | An Intelligent Decision Support Approach for Industrial Digital Twin | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/POR_NORTE/SFRH%2FBD%2F143243%2F2019/PT | |
| oaire.citation.endPage | 8 | pt_PT |
| oaire.citation.startPage | 1 | pt_PT |
| oaire.citation.title | 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA) | pt_PT |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | POR_NORTE | |
| person.familyName | Pires | |
| person.familyName | Leitão | |
| person.givenName | Flávia | |
| person.givenName | Paulo | |
| person.identifier | https://scholar.google.pt/citations?user=an9quSsAAAAJ&hl=pt-PT | |
| person.identifier | A-8390-2011 | |
| person.identifier.ciencia-id | A119-72AB-6255 | |
| person.identifier.ciencia-id | 8316-8F13-DA71 | |
| person.identifier.orcid | 0000-0001-7899-3020 | |
| person.identifier.orcid | 0000-0002-2151-7944 | |
| person.identifier.scopus-author-id | 57200412919 | |
| person.identifier.scopus-author-id | 35584388900 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| rcaap.rights | openAccess | pt_PT |
| rcaap.type | conferenceObject | pt_PT |
| relation.isAuthorOfPublication | 3ac8f73e-ecb2-44b6-9c6f-1ee99474e00f | |
| relation.isAuthorOfPublication | 68d9eb25-ad4f-439b-aeb2-35e8708644cc | |
| relation.isAuthorOfPublication.latestForDiscovery | 68d9eb25-ad4f-439b-aeb2-35e8708644cc | |
| relation.isProjectOfPublication | 6e01ddc8-6a82-4131-bca6-84789fa234bd | |
| relation.isProjectOfPublication | d0a17270-80a8-4985-9644-a04c2a9f2dff | |
| relation.isProjectOfPublication | 6255046e-bc79-4b82-8884-8b52074b4384 | |
| relation.isProjectOfPublication | e2e5e121-f56c-481a-980a-dcb4d852e27b | |
| relation.isProjectOfPublication.latestForDiscovery | d0a17270-80a8-4985-9644-a04c2a9f2dff |
