Logo do repositório
 
Publicação

Smart data driven system for pathological voices classification

dc.contributor.authorFernandes, Joana
dc.contributor.authorCandido Junior, Arnaldo
dc.contributor.authorFreitas, Diamantino Silva
dc.contributor.authorTeixeira, João Paulo
dc.date.accessioned2023-06-16T13:30:08Z
dc.date.available2023-06-16T13:30:08Z
dc.date.issued2022
dc.description.abstractClassifying and recognizing voice pathologies non-invasively using acoustic analysis saves patient and specialist time and can improve the accuracy of assessments. In this work, we intend to understand which models provide better accuracy rates in the distinction between healthy and pathological, to later be implemented in a system for the detection of vocal pathologies. 194 control subjects and 350 pathological subjects distributed across 17 pathologies were used. Each subject has 3 vowels in 3 tones, which is equivalent to 9 sound files per subject. For each sound file, 13 parameters were extracted (jitta, jitter, Rap, PPQ5, ShdB, Shim, APQ3, APQ5, F0, HNR, autocorrelation, Shannon entropy and logarithmic entropy). For the classification between healthy and pathological, several classifiers were used (Decision Trees, Discriminant Analysis, Logistic Regression Classifiers, Naive Bayes Classifiers, Support Vector Machines, Nearest Neighbor Classifiers, Ensemble Classifiers, Neural Network Classifiers) with various models. For each patient, 118 parameters were used (13 acoustic parameters * 9 sound files per subject, plus the subject's gender). As pre-processing of the input matrix data, the Outliers treatment was used using the quartile method, then the data were normalized and, finally, Principal Component Analysis (PCA) was applied in order to reduce the dimension. As the best model, the Wide Neural Network was obtained, with an accuracy of 98% and AUC of 0.99.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationFernandes, Joana; Candido Junior, Arnaldo; Freitas, Diamantino Silva; Teixeira, João Paulo (2022). Smart data driven system for pathological voices classification. In Optimization, Learning Algorithms and Applications, OL2A 2022. eISSN 1865-0937. 1754, p. 419-426pt_PT
dc.identifier.doi10.1007/978-3-031-23236-7_29
dc.identifier.eissn1865-0937
dc.identifier.issn1865-0929
dc.identifier.urihttp://hdl.handle.net/10198/28437
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer Naturept_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectSpeech pathologiespt_PT
dc.subjectMachine learningpt_PT
dc.subjectSpeech features
dc.subjectPrincipal component analysis
dc.subjectVocal acoustic analysis
dc.titleSmart data driven system for pathological voices classificationpt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.titleOptimization, Learning Algorithms and Applications, OL2A 2022pt_PT
person.familyNameFernandes
person.familyNameTeixeira
person.givenNameJoana M.S.R.
person.givenNameJoão Paulo
person.identifier663194
person.identifier.ciencia-idA41D-FF9D-929E
person.identifier.ciencia-id4F15-B322-59B4
person.identifier.orcid0000-0001-5962-2945
person.identifier.orcid0000-0002-6679-5702
person.identifier.ridN-6576-2013
person.identifier.scopus-author-id57069567500
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication8302713e-f657-401c-b67e-b97e548968a6
relation.isAuthorOfPublication33f4af65-7ddf-46f0-8b44-a7470a8ba2bf
relation.isAuthorOfPublication.latestForDiscovery8302713e-f657-401c-b67e-b97e548968a6

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
Smart Data Driven System.pdf
Tamanho:
458.51 KB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.75 KB
Formato:
Item-specific license agreed upon to submission
Descrição: