Repository logo
 
Publication

Tourism time series forecast: different ANN architectures with time index input

dc.contributor.authorTeixeira, João Paulo
dc.contributor.authorFernandes, Paula Odete
dc.date.accessioned2014-06-20T12:59:50Z
dc.date.available2014-06-20T12:59:50Z
dc.date.issued2012
dc.description.abstractTourism demand is usually characterized by the time series of the “Monthly Number of Guest Nights in the Hotels”. Considering the increasing importance of this sector of activity, the prediction tools became even more relevant for public and private organizations management. Artificial Neural Networks (ANN) are a competitive model compared to other methodologies such the ARIMA time series models or linear models. In this paper the feedforward, cascade forward and recurrent architectures are compared. The input of the ANNs consists of the previous 12 months and two nodes used to the year and month. The three architectures produced a mean absolute percentage error between 4 and 6%, but the feedforward architecture behaved better considering validation and test sets, with 4,2% error.por
dc.identifier.citationTeixeira, João Paulo; Fernandes, Paula O. (2012). Tourism time series forecast - different ANN architectures with time index input. In CENTERIS 2012 - Conference on ENTERprise Information Systems / HCIST 2012 - International Conference on Health and Social Care Information Systems and Technologies. p. 445-454. ISSN 2212-0173por
dc.identifier.doi10.1016/j.protcy.2012.09.049
dc.identifier.issn2212-0173
dc.identifier.urihttp://hdl.handle.net/10198/9717
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherElsevierpor
dc.subjectArtificial neural network architecturespor
dc.subjectTime series forecastpor
dc.subjectTourismpor
dc.titleTourism time series forecast: different ANN architectures with time index inputpor
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.endPage454por
oaire.citation.startPage445por
oaire.citation.titleProcedia Technologypor
oaire.citation.volume5por
person.familyNameTeixeira
person.familyNameFernandes
person.givenNameJoão Paulo
person.givenNamePaula Odete
person.identifier663194
person.identifierN-3804-2013
person.identifier.ciencia-id4F15-B322-59B4
person.identifier.ciencia-id991D-9D1E-D67D
person.identifier.orcid0000-0002-6679-5702
person.identifier.orcid0000-0001-8714-4901
person.identifier.ridN-6576-2013
person.identifier.scopus-author-id57069567500
person.identifier.scopus-author-id35200741800
rcaap.rightsrestrictedAccesspor
rcaap.typeconferenceObjectpor
relation.isAuthorOfPublication33f4af65-7ddf-46f0-8b44-a7470a8ba2bf
relation.isAuthorOfPublication2269147c-2b53-4d1c-bc1b-f1367d197262
relation.isAuthorOfPublication.latestForDiscovery2269147c-2b53-4d1c-bc1b-f1367d197262

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Procedia.pdf
Size:
254.74 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: