Repository logo
 
Publication

Pollen grain recognition through deep learning convolutional neural networks

dc.contributor.authorMonteiro, Fernando C.
dc.date.accessioned2022-05-09T09:11:50Z
dc.date.available2022-05-09T09:11:50Z
dc.date.issued2022
dc.description.abstractPalynology is the study of pollen, in particular, the pollen’s grain type, but the tasks of classification and counting of pollen grains are highly skilled and laborious. Despite the efforts made during the last decades, the manual classification process is still predominant. One of the reasons for that is the small number of taxa usually used in previous approaches. In this paper, we propose a new method to automatically classify pollen grains using a state-of-the-art deep learning technique applied to the recently published POLEN73S image dataset. Our proposal manages to classify up to 94% of the samples from the dataset with 73 different classes of pollen grains. This result, which surpasses all previous attempts in number and difficulty of taxa under consideration, gives good perspectives to achieve a perfect score in pollen recognition task even with a large number of pollen grain types.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMonteiro, Fernando C. (2022). Pollen grain recognition through deep learning convolutional neural networks. In AIP Conference Proceedings. Onlinept_PT
dc.identifier.doi10.1063/5.0081614pt_PT
dc.identifier.isbn978-073544182-8
dc.identifier.issn0094243X
dc.identifier.urihttp://hdl.handle.net/10198/25418
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectPollen recognitionpt_PT
dc.subjectDeep learningpt_PT
dc.subjectConvolutional neural networkpt_PT
dc.titlePollen grain recognition through deep learning convolutional neural networkspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.citation.conferencePlaceonlinept_PT
oaire.citation.startPage140001pt_PT
oaire.citation.titleAIP Conference Proceedingspt_PT
oaire.citation.volume2425pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameMonteiro
person.givenNameFernando C.
person.identifier.ciencia-id2019-BDBF-10E2
person.identifier.orcid0000-0002-1421-8006
person.identifier.ridH-9213-2016
person.identifier.scopus-author-id8986162600
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication363b6c37-282c-4cd6-bb54-3c97cc700d78
relation.isAuthorOfPublication.latestForDiscovery363b6c37-282c-4cd6-bb54-3c97cc700d78
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
AIP 2022.pdf
Size:
490.09 KB
Format:
Adobe Portable Document Format