Publication
Exploring Features to Classify Occupational Accidents in the Retail Sector
| dc.contributor.author | Sena, Inês | |
| dc.contributor.author | Braga, Ana Cristina | |
| dc.contributor.author | Novais, Paulo | |
| dc.contributor.author | Fernandes, Florbela P. | |
| dc.contributor.author | Pacheco, Maria F. | |
| dc.contributor.author | Vaz, Clara B. | |
| dc.contributor.author | Lima, José | |
| dc.contributor.author | Pereira, Ana I. | |
| dc.date.accessioned | 2024-10-08T08:28:58Z | |
| dc.date.available | 2024-10-08T08:28:58Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | The Machine Learning approach is used in several application domains, and its exploitation in predicting accidents in occupational safety is relatively recent. The present study aims to apply different Machine Learning algorithms for classifying the occurrence or nonoccurrence of accidents at work in the retail sector. The approach consists of obtaining an impact score for each store and work unit, considering two databases of a retail company, the preventive safety actions, and the action plans. Subsequently, each score is associated with the occurrence or non-occurrence of accidents during January and May 2023. Of the five classification algorithms applied, the Support Vector Machine was the one that obtained the best accuracy and precision values for the preventive safety actions. As for the set of actions plan, the Logistic Regression reached the best results in all calculated metrics. With this study, estimating the impact score of the study variables makes it possible to identify the occurrence of accidents at work in the retail sector with high precision and accuracy. | pt_PT |
| dc.description.sponsorship | The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020), ALGORITMI UIDB/00319/2020 and SusTEC (LA/P/0007/2021). This work has been supported by NORTE-01-0247-FEDER-072598 iSafety: Intelligent system for occupational safety and well-being in the retail sector. Inˆes Sena was supported by FCT PhD grant UI/BD/153348/2022. | pt_PT |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.citation | Sena, Inês; Braga, Ana Cristina; Novais, Paulo; Fernandes, Florbela P.; Pacheco, Maria F.; Vaz, Clara B.; Lima, José; Pereira, Ana I. (2024). Exploring Features to Classify Occupational Accidents in the Retail Sector. In 3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023). Cham: Springer Nature, Vol. 1, p. 49–62. ISBN 978-3-031-53024-1. | pt_PT |
| dc.identifier.doi | 10.1007/978-3-031-53025-8_4 | pt_PT |
| dc.identifier.isbn | 978-3-031-53025-8 | |
| dc.identifier.isbn | 978-3-031-53024-1 | |
| dc.identifier.uri | http://hdl.handle.net/10198/30340 | |
| dc.language.iso | eng | pt_PT |
| dc.peerreviewed | yes | pt_PT |
| dc.publisher | Springer Nature | pt_PT |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | ALGORITMI Research Center | |
| dc.relation | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| dc.relation | Intelligent system for occupational safety in retail sector | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
| dc.subject | Workplace Accidents Classification | pt_PT |
| dc.subject | Machine Learning algorithms | pt_PT |
| dc.subject | Score Impact | pt_PT |
| dc.title | Exploring Features to Classify Occupational Accidents in the Retail Sector | pt_PT |
| dc.type | conference paper | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | ALGORITMI Research Center | |
| oaire.awardTitle | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| oaire.awardTitle | Intelligent system for occupational safety in retail sector | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00319%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/OE/UI%2FBD%2F153348%2F2022/PT | |
| oaire.citation.endPage | 62 | pt_PT |
| oaire.citation.startPage | 49 | pt_PT |
| oaire.citation.title | 3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023) | pt_PT |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | OE | |
| person.familyName | Sena | |
| person.familyName | Fernandes | |
| person.familyName | Pacheco | |
| person.familyName | Vaz | |
| person.familyName | Lima | |
| person.familyName | Pereira | |
| person.givenName | Inês | |
| person.givenName | Florbela P. | |
| person.givenName | Maria F. | |
| person.givenName | Clara B. | |
| person.givenName | José | |
| person.givenName | Ana I. | |
| person.identifier | R-001-FQC | |
| person.identifier | R-000-8GD | |
| person.identifier.ciencia-id | DC10-817D-21B5 | |
| person.identifier.ciencia-id | 501D-6FD0-CC53 | |
| person.identifier.ciencia-id | F319-DAC3-8F15 | |
| person.identifier.ciencia-id | 9611-3386-E516 | |
| person.identifier.ciencia-id | 6016-C902-86A9 | |
| person.identifier.ciencia-id | 0716-B7C2-93E4 | |
| person.identifier.orcid | 0000-0003-4995-4799 | |
| person.identifier.orcid | 0000-0001-9542-4460 | |
| person.identifier.orcid | 0000-0001-7915-0391 | |
| person.identifier.orcid | 0000-0001-9862-6068 | |
| person.identifier.orcid | 0000-0001-7902-1207 | |
| person.identifier.orcid | 0000-0003-3803-2043 | |
| person.identifier.rid | F-1519-2016 | |
| person.identifier.rid | L-3370-2014 | |
| person.identifier.rid | F-3168-2010 | |
| person.identifier.scopus-author-id | 57222722951 | |
| person.identifier.scopus-author-id | 35179471000 | |
| person.identifier.scopus-author-id | 36802474600 | |
| person.identifier.scopus-author-id | 56352045500 | |
| person.identifier.scopus-author-id | 55851941311 | |
| person.identifier.scopus-author-id | 15071961600 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| rcaap.rights | openAccess | pt_PT |
| rcaap.type | conferenceObject | pt_PT |
| relation.isAuthorOfPublication | 395724d8-6b40-41f1-a6d5-7be1ebc19d22 | |
| relation.isAuthorOfPublication | 1f7a9fde-7a4d-4b2c-8f9d-dab571163c33 | |
| relation.isAuthorOfPublication | e56596ca-3238-4fde-ace1-abb363a222e8 | |
| relation.isAuthorOfPublication | 34bc350c-28d9-4b06-9874-b2b0dba58d1d | |
| relation.isAuthorOfPublication | d88c2b2a-efc2-48ef-b1fd-1145475e0055 | |
| relation.isAuthorOfPublication | e9981d62-2a2b-4fef-b75e-c2a14b0e7846 | |
| relation.isAuthorOfPublication.latestForDiscovery | 34bc350c-28d9-4b06-9874-b2b0dba58d1d | |
| relation.isProjectOfPublication | 6e01ddc8-6a82-4131-bca6-84789fa234bd | |
| relation.isProjectOfPublication | d0a17270-80a8-4985-9644-a04c2a9f2dff | |
| relation.isProjectOfPublication | 0d98f999-8fd3-46a8-8a71-a7ff478a1207 | |
| relation.isProjectOfPublication | 6255046e-bc79-4b82-8884-8b52074b4384 | |
| relation.isProjectOfPublication | 02e24118-f0f7-4012-a08b-cbe86c9c5958 | |
| relation.isProjectOfPublication.latestForDiscovery | d0a17270-80a8-4985-9644-a04c2a9f2dff |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Exploring Features to Classify Occupational Accidents.pdf
- Size:
- 490.38 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.75 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
