Repository logo
 
Publication

Comparative Analysis of Windows for Speech Emotion Recognition Using CNN

dc.contributor.authorTeixeira, Felipe
dc.contributor.authorSoares, Salviano Pinto
dc.contributor.authorAbreu, J.L. Pio
dc.contributor.authorOliveira, Paulo M.
dc.contributor.authorTeixeira, João Paulo
dc.date.accessioned2024-10-08T09:12:50Z
dc.date.available2024-10-08T09:12:50Z
dc.date.issued2024
dc.description.abstractThe paper presents the comparison of accuracy in the Speech Emotion Recognition task using the Hamming and Hanning windows for framing the speech and determining the spectrogram to be used as input of a convolutional neural network. The detection of between 4 and 10 emotional states was tested for both windows. The results show significant differences in accuracy between the two window types and provide valuable insights for the development of more efficient emotional state detection systems. The best accuracy between 4 and 10 emotions was 64.1% (4 emotions), 57.8% (5 emotions), 59.8% (6 emotions), 48.4% (7 emotions), 47.8% (8 emotions), 51.4% (9 emotions), and 45.9% (10 emotions). These accuracy is at the state-of-the art level.pt_PT
dc.description.sponsorshipThis research was funded by the European Regional Development Fund (ERDF) via the Regional Operational Program North 2020, GreenHealth- Digital strategies in biological assets to improve well-being and promote green health, Norte-01-0145-FEDER-000042; Foundation for Science and Technology (FCT, Portugal) support from national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021). The authors are grateful for financial support from UTAD. The authors would also like to thank Jo˜ao Mendes for his collaboration throughout the work.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationTeixeira, Felipe L.; Soares, Salviano Pinto; Abreu, J.L. Pio; Oliveira, Paulo M.; Teixeira, João P. (2024). Comparative Analysis of Windows for Speech Emotion Recognition Using CNN. In 3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023). Cham: Springer Nature, Vol. 1, p. 233–248. ISBN 978-3-031-53024-1.pt_PT
dc.identifier.doi10.1007/978-3-031-53025-8_17pt_PT
dc.identifier.isbn978-3-031-53024-1
dc.identifier.isbn978-3-031-53025-8
dc.identifier.urihttp://hdl.handle.net/10198/30344
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectSpeech Emotion Recognitionpt_PT
dc.subjectHammingpt_PT
dc.subjectHanningpt_PT
dc.subjectCNNpt_PT
dc.titleComparative Analysis of Windows for Speech Emotion Recognition Using CNNpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT
oaire.citation.endPage248pt_PT
oaire.citation.startPage233pt_PT
oaire.citation.title3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023)pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameTeixeira
person.familyNameTeixeira
person.givenNameFelipe
person.givenNameJoão Paulo
person.identifier663194
person.identifier.ciencia-id0E17-62FB-AA17
person.identifier.ciencia-id4F15-B322-59B4
person.identifier.orcid0000-0002-6679-5702
person.identifier.ridN-6576-2013
person.identifier.scopus-author-id57069567500
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication764c5209-b9ab-479e-b5be-59fbe07c784b
relation.isAuthorOfPublication33f4af65-7ddf-46f0-8b44-a7470a8ba2bf
relation.isAuthorOfPublication.latestForDiscovery33f4af65-7ddf-46f0-8b44-a7470a8ba2bf
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication6255046e-bc79-4b82-8884-8b52074b4384
relation.isProjectOfPublication.latestForDiscoveryd0a17270-80a8-4985-9644-a04c2a9f2dff

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Comparative Analysis of Windows.pdf
Size:
1.57 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: