| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 3 MB | Adobe PDF |
Authors
Abstract(s)
O crescimento populacional e as mudanças climáticas exercem pressão sobre os recursos
hídricos, cruciais para o abastecimento de água potável e a sustentação de ecossistemas
globais. As áreas montanhosas são particularmente vulneráveis a essas mudanças,
influenciando eventos extremos como enchentes e secas. Este estudo investigou o uso do
Sistema de Informações Geográficas (SIG) para caracterizar bacias hidrográficas em
regiões montanhosas, focando na eficácia do método do Soil Conservation Service (SCS)
para estimar o fluxo de água. Utilizando dados de Modelo Digital de Elevação, o SIG
permitiu a delimitação precisa das áreas e análise detalhada do relevo, fornecendo
informações cruciais para o modelo do SCS. Baseado na caracterização física e análise do
solo, identificaram-se variáveis como a precipitação útil (hu) e tempo para ponta (tp),
dependentes de fatores como precipitação média (P) e número de escoamento (N). Os
resultados de caudal de pico (ex.: QP100anos = 525,8 m3/s) estimados para a bacia do alto
Sabor demonstraram eficácia do método, corroborando estudos anteriores, onde 60% do
escoamento total é composto pelo escoamento direto. A validação permitiu correlacionar
variáveis e entender suas influências no comportamento hidrológico da bacia. Ficou
evidente que medidas físicas e geométricas da bacia desempenham papel crucial na
resposta do caudal de pico, destacando-se área e comprimento das linhas d'água.
Simulações mostraram que aumentos de 10% na precipitação média resultaram em
aumentos correspondentes no caudal, enquanto mudanças no coeficiente de escoamento
também influenciaram o caudal de pico. Este estudo contribui para compreender a
dinâmica hidrológica em regiões montanhosas, ressaltando a importância de considerar
características físicas, geométricas, e mudanças climáticas e de uso do solo na previsão e
mitigação de impactos de eventos extremos.
Population growth and climate change exert pressure on water resources, crucial for drinking water supply and sustaining global ecosystems. Mountainous areas are particularly vulnerable to these changes, influencing extreme events such as floods and droughts. This study investigated the use of Geographic Information Systems (GIS) to characterize watersheds in mountainous regions, focusing on the effectiveness of the Soil Conservation Service (SCS) method to estimate water flow. Using Digital Elevation Model (DEM) data, GIS enabled precise delineation of areas and detailed analysis of terrain, providing crucial information for the SCS model. Based on physical characterization and soil analysis, variables such as effective precipitation (hu) and time to peak (tp) were identified, dependent on factors like mean precipitation (P) and runoff number (N). Estimated peak flow results for the Alto Sabor basin (for eg.: QP100anos = 525,8 m3/s) demonstrated method effectiveness, corroborating previous studies where 60% of total flow is composed of direct runoff. Validation allowed for correlating variables and understanding their influences on basin hydrological behavior. It became evident that physical and geometric basin measures play a crucial role in peak flow response, with area and stream length standing out. Simulations showed that 10% increases in mean precipitation resulted in corresponding increases in flow, while changes in runoff coefficient also influenced peak flow. This study contributes to understanding hydrological dynamics in mountainous regions, highlighting the importance of considering physical, geometric, and climatic and land use change characteristics in predicting and mitigating impacts of extreme events.
Population growth and climate change exert pressure on water resources, crucial for drinking water supply and sustaining global ecosystems. Mountainous areas are particularly vulnerable to these changes, influencing extreme events such as floods and droughts. This study investigated the use of Geographic Information Systems (GIS) to characterize watersheds in mountainous regions, focusing on the effectiveness of the Soil Conservation Service (SCS) method to estimate water flow. Using Digital Elevation Model (DEM) data, GIS enabled precise delineation of areas and detailed analysis of terrain, providing crucial information for the SCS model. Based on physical characterization and soil analysis, variables such as effective precipitation (hu) and time to peak (tp) were identified, dependent on factors like mean precipitation (P) and runoff number (N). Estimated peak flow results for the Alto Sabor basin (for eg.: QP100anos = 525,8 m3/s) demonstrated method effectiveness, corroborating previous studies where 60% of total flow is composed of direct runoff. Validation allowed for correlating variables and understanding their influences on basin hydrological behavior. It became evident that physical and geometric basin measures play a crucial role in peak flow response, with area and stream length standing out. Simulations showed that 10% increases in mean precipitation resulted in corresponding increases in flow, while changes in runoff coefficient also influenced peak flow. This study contributes to understanding hydrological dynamics in mountainous regions, highlighting the importance of considering physical, geometric, and climatic and land use change characteristics in predicting and mitigating impacts of extreme events.
Description
Mestrado de dupla diplomação com a UTFPR, Universidade Tecnológica Federal do Paraná
Keywords
Mudanças climáticas Montanhas Eventos extremos Estimativa de caudal Precipitação
