Repository logo
 
Publication

Machine learning applied to an intelligent and adaptive robotic inspection station

dc.contributor.authorVariz, Luis
dc.contributor.authorPiardi, Luis
dc.contributor.authorRodrigues, Pedro João
dc.contributor.authorLeitão, Paulo
dc.date.accessioned2020-04-01T08:18:29Z
dc.date.available2020-04-01T08:18:29Z
dc.date.issued2019
dc.description.abstractIndustry 4.0 promotes the use of emergent technologies, such as Internet of Things (IoT), Big Data, artificial intelligence (AI) and cloud computing, sustained by cyber-physical systems to reach smart factories. The idea is to decen-tralize the production systems and allow to reach monitoring, adaptation and optimization to be made in real time, based on the large amount of data available at shop floor that feed the use of machine learning techniques. This technological revolution will bring significant productivity gains, resources savings and reduced maintenance costs, as machines will have information to operate more efficiently, adaptable and following demand fluctuations. This paper discusses the application of supervised Machine Learning techniques allied with artificial vision, to implement an intelligent, collaborative and adaptive robotic inspection station, which carries out the quality control of Human Machine Interface (HMI) consoles, equipped with pressure buttons and LCD displays. Machine learning techniques were applied for the recognition of the operator's face, to classify the type of HMI console to be inspected, to classify the state condition of the pressure buttons and detect anomalies in the LCD displays. The developed solution reaches promising results, with almost 100% accuracy in the correct classification of the consoles and anomalies in the pressure buttons, and also high values in the detection of defects in the LCD displays.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationVariz, Luis; Piardi, Luis; Rodrigues, Pedro Joao; Leitão, Paulo (2019). Machine learning applied to an intelligent and adaptive robotic inspection station. In 2019 IEEE 17th International Conference on Industrial Informatics (INDIN). Helsinki, Finlandpt_PT
dc.identifier.doi10.1109/INDIN41052.2019.8972298pt_PT
dc.identifier.urihttp://hdl.handle.net/10198/21304
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectMachine learningpt_PT
dc.subjectArtificial visionpt_PT
dc.subjectQuality controlpt_PT
dc.subjectConvolution neural networkpt_PT
dc.titleMachine learning applied to an intelligent and adaptive robotic inspection stationpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceHelsinki, Finlandpt_PT
oaire.citation.endPage295pt_PT
oaire.citation.startPage290pt_PT
oaire.citation.title2019 IEEE 17th International Conference on Industrial Informatics (INDIN)pt_PT
person.familyNamePiardi
person.familyNameRodrigues
person.familyNameLeitão
person.givenNameLuís
person.givenNamePedro João
person.givenNamePaulo
person.identifierA-8390-2011
person.identifier.ciencia-idC51A-82DB-016F
person.identifier.ciencia-id1316-21BB-9015
person.identifier.ciencia-id8316-8F13-DA71
person.identifier.orcid0000-0003-1627-8210
person.identifier.orcid0000-0002-0555-2029
person.identifier.orcid0000-0002-2151-7944
person.identifier.scopus-author-id35584388900
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication643e9664-ec9b-4b2f-b93c-6f3f8335fd61
relation.isAuthorOfPublication6c5911a6-b62b-4876-9def-60096b52383a
relation.isAuthorOfPublication68d9eb25-ad4f-439b-aeb2-35e8708644cc
relation.isAuthorOfPublication.latestForDiscovery68d9eb25-ad4f-439b-aeb2-35e8708644cc

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
v02.pdf
Size:
5.45 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: