Logo do repositório
 
Publicação

Parametric study of a stochastic SEIR model for a COVID-19 post-pandemic scenario

dc.contributor.authorBalsa, Carlos
dc.contributor.authorPadua, Everaldo Junior Borges Garcia de
dc.contributor.authorPinto, Luan Crisostomo
dc.contributor.authorRufino, José
dc.date.accessioned2024-02-20T15:06:44Z
dc.date.available2024-02-20T15:06:44Z
dc.date.issued2024
dc.description.abstractDespite the end of the COVID-19 pandemic was decreed by the WHO, this disease has not disappeared and continues to claim victims. Thus, it remains important to follow up, monitor, and project its evolution in the short term. To that end, mathematical models are a precious tool. Based on its results, it is possible to take preventive measures that minimize the spread of this contagious disease. This study focuses on the stochastic SEIR epidemic model adapted to a post-pandemic scenario. The main factors that influence the spread and containment of the disease are considered, namely, the rates of transmission, vaccination, and quarantine. The results obtained point to a probability of nearly 12% of the appearance of a major epidemic outbreak that could affect a large part of the population. Without vaccination, it is expected that an epidemic outbreak will infect 75% of the population. Therefore, the maintenance of adequate vaccination rates is an essential measure to overcome the loss of immunity from the vaccinated or recovered individuals.pt_PT
dc.description.sponsorshipThe authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationBalsa, Carlos; Padua, Everaldo Junior Borges Garcia de; Pinto, Luan Crisostomo; Rufino, José (2024). Parametric study of a stochastic SEIR model for a COVID-19 post-pandemic scenario. In 3rd International Conference on Advanced Research in Technologies, Information, Innovation and Sustainability (ARTIIS). ISSN 1865-0929. 1937, p. 43-57pt_PT
dc.identifier.doi10.1007/978-3-031-48930-3_4pt_PT
dc.identifier.eissn1865-0937
dc.identifier.issn1865-0929
dc.identifier.urihttp://hdl.handle.net/10198/29570
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer Naturept_PT
dc.relationLA/P/0007/2021pt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectCOVID-19pt_PT
dc.subjectPost-pandemic scenariopt_PT
dc.subjectParametric studypt_PT
dc.subjectStochastic SEIR modelpt_PT
dc.titleParametric study of a stochastic SEIR model for a COVID-19 post-pandemic scenariopt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.citation.endPage57pt_PT
oaire.citation.startPage43pt_PT
oaire.citation.title3rd International Conference on Advanced Research in Technologies, Information, Innovation and Sustainability (ARTIIS)pt_PT
oaire.citation.volume1937pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameBalsa
person.familyNameRufino
person.givenNameCarlos
person.givenNameJosé
person.identifier1721518
person.identifier.ciencia-idDE1E-2F7A-AAB1
person.identifier.ciencia-idC414-F47F-6323
person.identifier.orcid0000-0003-2431-8665
person.identifier.orcid0000-0002-1344-8264
person.identifier.ridM-8735-2013
person.identifier.scopus-author-id23391719100
person.identifier.scopus-author-id55947199100
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationd0e5ccff-9696-4f4f-9567-8d698a6bf17d
relation.isAuthorOfPublication1e24d2ce-a354-442a-bef8-eebadd94b385
relation.isAuthorOfPublication.latestForDiscoveryd0e5ccff-9696-4f4f-9567-8d698a6bf17d
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication.latestForDiscoveryd0a17270-80a8-4985-9644-a04c2a9f2dff

Ficheiros

Principais
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
COVID19_ARTIIS_2023.pdf
Tamanho:
916.12 KB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.75 KB
Formato:
Item-specific license agreed upon to submission
Descrição: