| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 2.99 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
As portas corta-fogo são elementos fundamentais para a segurança contra incêndios em edificações. Elas são projetadas e construídas para suportar altas temperaturas e impedir a propagação do fogo de um ambiente para outro. Em caso de incêndio, as portas corta-fogo atuam como barreiras físicas, retardando a progressão das chamas e fumaça, permitindo assim que as pessoas tenham mais tempo para evacuar o prédio e para que os bombeiros possam atuar no combate às chamas. Além disso, as portas corta-fogo são um elemento obrigatório em muitas normas e legislações de segurança contra incêndios, o que reforça a sua importância na prevenção de tragédias e na preservação de vidas e patrimônio.
A presente dissertação teve como objetivo a resistência térmica de painéis multicamadas de madeira e derivados de madeira, tipo sanduíche, constituídos por MDF + Lã de rocha + MDF, expostos a ação da curva de incêndio padrão ISO834. Ademais, dimensionar as menores espessuras desse painel que suportasse os tempos regulamentados de proteção contra incêndios de I130, I160 e I190 minutos respectivamente, através de simulação numérica em regime transiente, assistida por computador. Com o auxílio do software Ansys Workbench, foram elaborados os modelos de porta que seriam a base do processo de otimização.
O primeiro modelo de porta a ser gerado foi baseado em um estudo experimental que utilizou uma construção de um painel sanduíche com os mesmos materiais, para a validação da simulação numérica desenvolvida. Demonstrando que o sistema numérico tinha uma grande proximidade com os resultados alcançados no estudo de caso realizado em laboratório, a otimização foi aceita e realizada.
Foi realizado os ensaios de otimização do painel folha da porta com o objetivo de achar as menores espessuras ótimas que satisfazem os tempos de resistência padronizados, além de encontrar a folha da porta com menor massa. Onde para uma classificação I130, I160 e I190 a espessura mínima foi de 38, 57 e 68 mm respectivamente. A partir dessa otimização avaliar o comportamento da folha da porta, integrada no sistema bloco porta, o qual tem os elementos circundantes como batente, dobradiça e paredes, para assim avaliar se os critérios de isolamento do calor, pelo tempo determinado seriam afetados.
Fire doors are fundamental elements for fire safety in buildings. They are designed and constructed to withstand high temperatures and prevent the spread of fire from one environment to another. In case of fire, fire doors act as physical barriers, slowing down the progression of flames and smoke, thus allowing people more time to evacuate the building and firefighters to act in extinguishing the fire. In addition, fire doors are mandatory in many safety regulations and legislation concerning fire safety, which reinforces their importance in preventing tragedies and preserving lives and property. The present dissertation aimed to investigate the thermal resistance of multilayer wood and wood-derived sandwich panels composed of MDF + Rockwool + MDF, when exposed to the standard ISO834 fire curve. Additionally, the objective was to determine the minimum panel thickness that would meet the regulated fire protection times of I130, I160, and I190 minutes, respectively, through computer-assisted numerical simulations using Ansys Workbench software. Models of door panels were developed as the basis for the optimization process. The first door model generated was based on an experimental study that used a sandwich panel construction with the same materials for validation of the developed numerical simulation. The results showed that the numerical system closely matched the laboratory study, and thus the optimization was accepted and performed. The optimization tests for the door panel leaf were performed in order to find the thinnest optimal thicknesses that meet the standardized resistance times, as well as to find the door leaf with the lowest mass. For classifications I130, I160 and I190, the minimum thickness was 38, 57, and 68 mm, respectively. Based on this optimization, the behavior of the door leaf integrated into the door block system, which includes surrounding elements such as the door frame, hinges, and walls, was evaluated to determine if the heat insulation criteria over the specified time would be affected.
Fire doors are fundamental elements for fire safety in buildings. They are designed and constructed to withstand high temperatures and prevent the spread of fire from one environment to another. In case of fire, fire doors act as physical barriers, slowing down the progression of flames and smoke, thus allowing people more time to evacuate the building and firefighters to act in extinguishing the fire. In addition, fire doors are mandatory in many safety regulations and legislation concerning fire safety, which reinforces their importance in preventing tragedies and preserving lives and property. The present dissertation aimed to investigate the thermal resistance of multilayer wood and wood-derived sandwich panels composed of MDF + Rockwool + MDF, when exposed to the standard ISO834 fire curve. Additionally, the objective was to determine the minimum panel thickness that would meet the regulated fire protection times of I130, I160, and I190 minutes, respectively, through computer-assisted numerical simulations using Ansys Workbench software. Models of door panels were developed as the basis for the optimization process. The first door model generated was based on an experimental study that used a sandwich panel construction with the same materials for validation of the developed numerical simulation. The results showed that the numerical system closely matched the laboratory study, and thus the optimization was accepted and performed. The optimization tests for the door panel leaf were performed in order to find the thinnest optimal thicknesses that meet the standardized resistance times, as well as to find the door leaf with the lowest mass. For classifications I130, I160 and I190, the minimum thickness was 38, 57, and 68 mm, respectively. Based on this optimization, the behavior of the door leaf integrated into the door block system, which includes surrounding elements such as the door frame, hinges, and walls, was evaluated to determine if the heat insulation criteria over the specified time would be affected.
Description
Mestrado de dupla diplomação com a Associação Educativa Evangélica - UniEvangélica
Keywords
Porta corta-fogo Resistencia térmica Painéis multicamadas Ansys Otimização e simulação numérica
