Repository logo
 
Publication

Accuracy Optimization in Speech Pathology Diagnosis with Data Preprocessing Techniques

dc.contributor.authorFernandes, Joana Filipa Teixeira
dc.contributor.authorFreitas, Diamantino Rui
dc.contributor.authorTeixeira, João Paulo
dc.date.accessioned2024-10-07T10:59:18Z
dc.date.available2024-10-07T10:59:18Z
dc.date.issued2024
dc.description.abstractUsing acoustic analysis to classify and identify speech disorders noninvasively can reduce waiting times for patients and specialists while also increasing the accuracy of diagnoses. In order to identify models to use in a vocal disease diagnosis system, we want to know which models have higher success rates in distinguishing between healthy and pathological sounds. For this purpose, 708 diseased people spread throughout 19 pathologies, and 194 control people were used. There are nine sound files per subject, three vowels in three tones, for each subject. From each sound file, 13 parameters were extracted. For the classification of healthy/pathological individuals, a variety of classifiers based on Machine Learning models were used, including decision trees, discriminant analyses, logistic regression classifiers, naive Bayes classifiers, support vector machines, classifiers of closely related variables, ensemble classifiers and artificial neural network classifiers. For each patient, 118 parameters were used initially. The first analysis aimed to find the best classifier, thus obtaining an accuracy of 81.3% for the Ensemble Sub-space Discriminant classifier. The second and third analyses aimed to improve ground accuracy using preprocessingmethodologies. Therefore, in the second analysis, the PCA technique was used, with an accuracy of 80.2%. The third analysis combined several outlier treatment models with several data normalizationmodels and, in general, accuracy improved, obtaining the best accuracy (82.9%) with the combination of the Greebs model for outliers treatment and the range model for the normalization of data procedure.pt_PT
dc.description.sponsorshipThe work was supported by the Foundation for Science and Technology UIDB/05757/2020, UIDP/05757/2020 and 2021.04729.BD and by SusTEC LA/P/0007/2021. The authors acknowledge the financial support for FEUP for this publication.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationFernandes, Joana Filipa Teixeira; Freitas, Diamantino Rui; Teixeira, João Paulo (2024). Accuracy Optimization in Speech Pathology Diagnosis with Data Preprocessing Techniques. In 3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023). Cham: Springer Nature, Vol. 1, p. 287–299. ISBN 978-3-031-53024-1.pt_PT
dc.identifier.doi10.1007/978-3-031-53025-8_20pt_PT
dc.identifier.isbn978-3-031-53024-1
dc.identifier.isbn978-3-031-53025-8
dc.identifier.urihttp://hdl.handle.net/10198/30321
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer Naturept_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectOutlierspt_PT
dc.subjectNormalizationpt_PT
dc.subjectSpeech Pathologiespt_PT
dc.subjectSpeech Featurespt_PT
dc.subjectMachine Learningpt_PT
dc.subjectVocal Acoustic Analysispt_PT
dc.titleAccuracy Optimization in Speech Pathology Diagnosis with Data Preprocessing Techniquespt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//2021.04729.BD/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT
oaire.citation.endPage299pt_PT
oaire.citation.startPage287pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameFernandes
person.familyNameTeixeira
person.givenNameJoana Filipa Teixeira
person.givenNameJoão Paulo
person.identifierABC-9055-2020
person.identifier663194
person.identifier.ciencia-idAE12-440A-299D
person.identifier.ciencia-id4F15-B322-59B4
person.identifier.orcid0000-0002-0618-4627
person.identifier.orcid0000-0002-6679-5702
person.identifier.ridN-6576-2013
person.identifier.scopus-author-id57069567500
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationa6f7a119-fbc9-439f-8dd9-0bbc9ec82fad
relation.isAuthorOfPublication33f4af65-7ddf-46f0-8b44-a7470a8ba2bf
relation.isAuthorOfPublication.latestForDiscoverya6f7a119-fbc9-439f-8dd9-0bbc9ec82fad
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublicationec0114b7-e814-410f-9a3f-62ddfc976e66
relation.isProjectOfPublication6255046e-bc79-4b82-8884-8b52074b4384
relation.isProjectOfPublication.latestForDiscovery6255046e-bc79-4b82-8884-8b52074b4384

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Accuracy Optimization.pdf
Size:
600.82 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: