Repository logo
 
Publication

Sensitivity Analysis of the SimQL Trustworthy Recommendation System

datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
datacite.subject.sdg09:Indústria, Inovação e Infraestruturas
dc.contributor.authorFlávia Pires
dc.contributor.authorMoreira, António Paulo G. M.
dc.contributor.authorPaulo Leitão
dc.contributor.authorLeitão, Paulo
dc.contributor.authorPires, Flávia
dc.date.accessioned2025-02-28T16:15:49Z
dc.date.available2025-02-28T16:15:49Z
dc.date.issued2024
dc.description.abstractThe manufacturing domain faces a challenge in making timely decisions due to the large amounts of data generated by digital technologies such as Internet-of-Things, Artificial Intelligence (AI), Digital Twin, and Big Data. By integrating recommendation systems is possible to support the decision-makers in handling large amounts of data by delivering personalised, accurate, and quality recommendations. One example is the SimQL recommendation model that incorporates AI algorithms with trust and similarity measures to enhance recommendation quality. This paper aims to analyse the sensitivity of the SimQL model’s parameters, such as dataset conditions, trust and learning factors, and their impact on the final recommendation quality. A fuzzy logic approach is employed to evaluate the model and identify optimal operating conditions for the recommendation system. By implementing the findings of this study, manufacturers can improve the acceptance and adoption of the SimQL trustworthy recommendation system in this field.eng
dc.description.sponsorshipThe authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021). The author Flávia Pires thanks the Fundação para a Ciência e Tecnologia (FCT), Portugal, for the PhD Grant SFRH/BD/143243/2019.
dc.identifier.citationPires, F., Moreira, A.P., Leitão, P. (2024). Sensitivity Analysis of the SimQL Trustworthy Recommendation System. In 13th International Workshop on Service Orientation in Holonic and Multi-Agent Manufacturing (SOHOMA 2023). Cham: Springer Nature, p. 333-344. ISBN 978-303153444-7.
dc.identifier.doi10.1007/978-3-031-53445-4_28
dc.identifier.isbn9783031534447
dc.identifier.isbn9783031534454
dc.identifier.urihttp://hdl.handle.net/10198/34327
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer Nature
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationAn Intelligent Decision Support Approach for Industrial Digital Twin
dc.relationLA/P/0007/2021
dc.relation.ispartofStudies in Computational Intelligence
dc.relation.ispartofService Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectManufacturing
dc.subjectDecision-making
dc.subjectRecommendation system
dc.subjectSensitivity analysis
dc.titleSensitivity Analysis of the SimQL Trustworthy Recommendation System
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleAn Intelligent Decision Support Approach for Industrial Digital Twin
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/POR_NORTE/SFRH%2FBD%2F143243%2F2019/PT
oaire.citation.endPage344
oaire.citation.startPage333
oaire.citation.title13th International Workshop on Service Orientation in Holonic and Multi-Agent Manufacturing (SOHOMA 2023)
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStreamPOR_NORTE
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameLeitão
person.familyNamePires
person.givenNamePaulo
person.givenNameFlávia
person.identifierA-8390-2011
person.identifierhttps://scholar.google.pt/citations?user=an9quSsAAAAJ&hl=pt-PT
person.identifier.ciencia-id8316-8F13-DA71
person.identifier.ciencia-idA119-72AB-6255
person.identifier.orcid0000-0002-2151-7944
person.identifier.orcid0000-0001-7899-3020
person.identifier.scopus-author-id35584388900
person.identifier.scopus-author-id57200412919
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublication68d9eb25-ad4f-439b-aeb2-35e8708644cc
relation.isAuthorOfPublication3ac8f73e-ecb2-44b6-9c6f-1ee99474e00f
relation.isAuthorOfPublication.latestForDiscovery68d9eb25-ad4f-439b-aeb2-35e8708644cc
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublicatione2e5e121-f56c-481a-980a-dcb4d852e27b
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Sensivity analysis.pdf
Size:
2.56 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: