Repository logo
 
Publication

Evaluation Metrics for Collaborative Fault Detection and Diagnosis in Cyber-Physical Systems

dc.contributor.authorPiardi, Luis
dc.contributor.authorOliveira, Andre Schneider
dc.contributor.authorCosta, Pedro
dc.contributor.authorLeitão, Paulo
dc.date.accessioned2024-10-21T10:16:48Z
dc.date.available2024-10-21T10:16:48Z
dc.date.issued2024
dc.description.abstractCyber-physical systems (CPS) rapidly expand within industrial contexts in a new era of digitalization, processing power, and inter-device communication capabilities. These advancements integrate technologies such as the Internet of Things (IoT), artificial intelligence (AI), and cloud and edge computing, granting processes and operations a high degree of autonomy. In addition, these interconnections foster collective intelligence arising from information exchange and collaboration between components, often outperforming individual capabilities. This collective intelligence manifests in fault detection and diagnosis (FDD) tasks within CPS, as it significantly improves the flexibility, performance, and scalability. However, the inherent complexity of CPS poses challenges in determining the best configuration of the collaboration parameters, such as when and how to collaborate, wherein incorrect adjustments may lead to decision errors and compromise the system’s performance. With this in mind, this paper proposes seven metrics to evaluate collaboration performance for fault detection and diagnosis in multi-agent systems (MAS)-based CPS, evaluating when the collaboration is beneficial or when the collaboration parameters need to be adjusted. The experiments focus on collaborative fault detection in temperature and humidity sensors within warehouse racks, where the proposed evaluation metrics point out the impact of collaboration on the detection task, as well as possible actions to be adopted to improve the agent’s performance.pt_PT
dc.description.sponsorshipThis work was supported by national funds through FCT/MCTES (PIDDAC): CeDRI, UIDB/05757/2020 (DOI: 10.54499/UIDB/05757/2020) and UIDP/05757/2020 (DOI: 10.54499/UIDP/05757/2020); and SusTEC, LA/P/0007/2020 (DOI: 10.54499/LA/P/0007/2020). Luis Piardi thank FCT for the PhD Grant UI/BD/151286/2021 (DOI: 10.54499/UI/BD/151286/2021).
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.citationPiardi, Luis; Oliveira, André; Costa, Pedro; Leitão, Paulo (2024). Evaluation Metrics for Collaborative Fault Detection and Diagnosis in Cyber-Physical Systems. In 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA). Padova: IEEE, p. 1-8. ISBN 979-8-3503-6123-0.pt_PT
dc.identifier.doi10.1109/ETFA61755.2024.10710719pt_PT
dc.identifier.isbn979-8-3503-6123-0
dc.identifier.urihttp://hdl.handle.net/10198/30455
dc.language.isoengpt_PT
dc.peerreviewedyes
dc.publisherIEEEpt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectCyber-Physical Systempt_PT
dc.subjectCollaborative Fault Detectionpt_PT
dc.subjectCollaborative Fault Diagnosispt_PT
dc.subjectMulti-agent Systempt_PT
dc.titleEvaluation Metrics for Collaborative Fault Detection and Diagnosis in Cyber-Physical Systemspt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//UI%2FBD%2F151286%2F2021/PT
oaire.citation.endPage8
oaire.citation.startPage1
oaire.citation.title2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA)pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNamePiardi
person.familyNameLeitão
person.givenNameLuís
person.givenNamePaulo
person.identifierA-8390-2011
person.identifier.ciencia-idC51A-82DB-016F
person.identifier.ciencia-id8316-8F13-DA71
person.identifier.orcid0000-0003-1627-8210
person.identifier.orcid0000-0002-2151-7944
person.identifier.scopus-author-id35584388900
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication643e9664-ec9b-4b2f-b93c-6f3f8335fd61
relation.isAuthorOfPublication68d9eb25-ad4f-439b-aeb2-35e8708644cc
relation.isAuthorOfPublication.latestForDiscovery643e9664-ec9b-4b2f-b93c-6f3f8335fd61
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication6255046e-bc79-4b82-8884-8b52074b4384
relation.isProjectOfPublicationeb3d92a9-fc78-486c-9101-5bd5ff389f92
relation.isProjectOfPublication.latestForDiscoveryd0a17270-80a8-4985-9644-a04c2a9f2dff

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Evaluation Metrics.pdf
Size:
2.6 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: