Repository logo
 
Publication

Deep learning in the identification of psoriatic skin lesions

dc.contributor.authorLima, Gabriel Lenin Silva
dc.contributor.authorPires, Carolina
dc.contributor.authorBeuren, Arlete Teresinha
dc.contributor.authorLopes, Rui Pedro
dc.date.accessioned2024-03-11T09:20:12Z
dc.date.available2024-03-11T09:20:12Z
dc.date.issued2024
dc.description.abstractPsoriasis is a dermatological lesion that manifests in several regions of the body. Its late diagnosis can generate the aggravation of the disease itself, as well as of the comorbidities associated with it. The proposed work presents a computational system for image classification in smartphones, through deep convolutional neural networks, to assist the process of diagnosis of psoriasis. The dataset and the classification algorithms used revealed that the classification of psoriasis lesions was most accurate with unsegmented and unprocessed images, indicating that deep learning networks are able to do a good feature selection. Smaller models have a lower accuracy, although they are more adequate for environments with power and memory restrictions, such as smartphones.pt_PT
dc.description.sponsorshipThe authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationLima, Gabriel Lenin Silva; Pires, Carolina; Beuren, Arlete Teresinha; Lopes, Rui Pedro (2024). Deep learning in the identification of psoriatic skin lesions. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIARP). Cham: Springer. 14469, p. 298-313. ISBN 978-3-031-49017-0pt_PT
dc.identifier.doi10.1007/978-3-031-49018-7_22pt_PT
dc.identifier.isbn978-3-031-49017-0
dc.identifier.urihttp://hdl.handle.net/10198/29601
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relationLA/P/0007/2021pt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectImage processingpt_PT
dc.subjectDeep learningpt_PT
dc.subjectPsoriasis classificationpt_PT
dc.subjectMobile applicationpt_PT
dc.titleDeep learning in the identification of psoriatic skin lesionspt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.citation.endPage313pt_PT
oaire.citation.startPage298pt_PT
oaire.citation.titleProgress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIARP)pt_PT
oaire.citation.volume14469pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameLopes
person.givenNameRui Pedro
person.identifier.ciencia-id8E14-54E4-4DB5
person.identifier.orcid0000-0002-9170-5078
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicatione1e64423-0ec8-46ee-be96-33205c7c98a9
relation.isAuthorOfPublication.latestForDiscoverye1e64423-0ec8-46ee-be96-33205c7c98a9
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Deep Learning in.pdf
Size:
2.03 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: