Repository logo
 
Publication

Exploring Human Action Recognition for Rehabilitation Game Application

dc.contributor.authorLopes, Júlio Castro
dc.contributor.authorVan-Deste, Isaac
dc.contributor.authorLopes, Rui Pedro
dc.date.accessioned2024-07-01T10:07:28Z
dc.date.available2024-07-01T10:07:28Z
dc.date.issued2024
dc.description.abstractThrough computer vision algorithms motion can be computed, which can be a crucial element to be integrated with serious game environments. To evaluate the efficacy of motion detection algorithms, the information of these algorithms can be used to perform Human Action Recognition (HAR). There are several algorithms to perform HAR, although skeleton approaches can be seen as the best way to isolate human motion. To extract the human skeleton representation, the work described in this paper evaluates three distinct methods: OpenPose (2D), YOLO-Pose (2D) and BlazePose (3D). The information translated by the skeleton representations is normalized by lightweight normalization algorithms (for further real-time application). To classify the video sequence and further action identification, a Long Short Term Memory network (LSTM), was used. Using the N-UCLA dataset, the highest F1 score of 0.745 was achieved using OpenPose skeleton extraction (2D), followed by the computation of the angles in each joint, demonstrating that the OpenPose skeleton representation can be the most viable solution for computing human motion in serious games.pt_PT
dc.description.sponsorshipThe authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI, UIDB/05757/2020 (DOI: 10.54499/UIDB/05757/2020) and UIDP/05757/2020 (DOI: 10.54499/UIDP/05757/2020) and SusTEC, LA/P/0007/2020 (DOI: 10.54499/LA/P/0007/2020).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationLopes, Júlio Castro; Van-Deste, Isaac; Lopes, Rui Pedro (2024). Exploring Human Action Recognition for Rehabilitation Game Application. In 2024 IEEE 12th International Conference on Serious Games and Applications for Health (SeGAH). IEEE, p. 1-8. ISBN 979-8-3503-8438-3pt_PT
dc.identifier.doi10.1109/SeGAH61285.2024.10639556pt_PT
dc.identifier.isbn979-8-3503-8438-3
dc.identifier.urihttp://hdl.handle.net/10198/29974
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectHuman Action Recognitionpt_PT
dc.subjectSkeleton extractionpt_PT
dc.subjectOpenPosept_PT
dc.subjectYOLO-Posept_PT
dc.subjectBlazePosept_PT
dc.subjectMoving Joints Descriptorpt_PT
dc.titleExploring Human Action Recognition for Rehabilitation Game Applicationpt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT
oaire.citation.endPage8pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.title2024 IEEE 12th International Conference on Serious Games and Applications for Health (SeGAH)
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameVan-Deste
person.familyNameLopes
person.givenNameIsaac
person.givenNameRui Pedro
person.identifier.ciencia-id871B-13B1-BE1E
person.identifier.ciencia-id8E14-54E4-4DB5
person.identifier.orcid0000-0003-0651-8567
person.identifier.orcid0000-0002-9170-5078
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationae7bb20d-b124-4835-8027-d75a5c6fd88c
relation.isAuthorOfPublicatione1e64423-0ec8-46ee-be96-33205c7c98a9
relation.isAuthorOfPublication.latestForDiscoverye1e64423-0ec8-46ee-be96-33205c7c98a9
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication6255046e-bc79-4b82-8884-8b52074b4384
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Exploring_Human_Action_Recognition.pdf
Size:
2.04 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: