Repository logo
 
Publication

Transfer learning with audioSet to voice pathologies identification in continuous speech

dc.contributor.authorGuedes, Victor
dc.contributor.authorTeixeira, Felipe
dc.contributor.authorOliveira, Alessa Anjos de
dc.contributor.authorFernandes, Joana Filipa Teixeira
dc.contributor.authorSilva, Letícia
dc.contributor.authorCandido Junior, Arnaldo
dc.contributor.authorTeixeira, João Paulo
dc.date.accessioned2020-04-23T09:46:13Z
dc.date.available2020-04-23T09:46:13Z
dc.date.issued2019
dc.description.abstractThe classification of pathological diseases with the implementation of concepts of Deep Learning has been increasing considerably in recent times. Among the works developed there are good results for the classification in sustained speech with vowels, but few related works for the classification in continuous speech. This work uses the German Saarbrücken Voice Database with the phrase “Guten Morgen, wie geht es Ihnen?” to classify four classes: dysphonia, laryngitis, paralysis of vocal cords and healthy voices. Transfer learning concepts were used with the AudioSet database. Two models were developed based on Long-Short-Term-Memory and Convolutional Network for classification of extracted embeddings and comparison of the best results, using cross-validation. The final results allowed to obtaining 40% of f1-score for the four classes, 66% f1-score for Dysphonia x Healthy, 67% for Laryngitis x healthy and 80% for Paralysis x Healthy.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationGuedes, Victor; Teixeira, Felipe; Oliveira, Alessa; Fernandes, Joana; Silva, Leticia; Junior, Arnaldo; Teixeira, João Paulo (2019). Transfer learning with audioSet to voice pathologies identification in continuous speech. In International Conference on ENTERprise Information Systems, International Conference on Project MANagement. Tunisia. 164, p. 662-669pt_PT
dc.identifier.doi10.1016/j.procs.2019.12.233pt_PT
dc.identifier.urihttp://hdl.handle.net/10198/21796
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectLong short term memorypt_PT
dc.subjectConvolutional neural networkpt_PT
dc.subjectSVDpt_PT
dc.subjectDeep learningpt_PT
dc.subjectVoice pathologies diagnosept_PT
dc.titleTransfer learning with audioSet to voice pathologies identification in continuous speechpt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.conferencePlaceTunisiapt_PT
oaire.citation.endPage669pt_PT
oaire.citation.startPage662pt_PT
oaire.citation.titleInternational Conference on ENTERprise Information Systems, International Conference on Project MANagementpt_PT
oaire.citation.volume164pt_PT
person.familyNameTeixeira
person.familyNameFernandes
person.familyNameSilva
person.familyNameTeixeira
person.givenNameFelipe
person.givenNameJoana Filipa Teixeira
person.givenNameLetícia
person.givenNameJoão Paulo
person.identifierABC-9055-2020
person.identifier663194
person.identifier.ciencia-id0E17-62FB-AA17
person.identifier.ciencia-idAE12-440A-299D
person.identifier.ciencia-idC01E-87BA-67D7
person.identifier.ciencia-id4F15-B322-59B4
person.identifier.orcid0000-0002-0618-4627
person.identifier.orcid0000-0003-3812-2794
person.identifier.orcid0000-0002-6679-5702
person.identifier.ridN-6576-2013
person.identifier.scopus-author-id57069567500
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication764c5209-b9ab-479e-b5be-59fbe07c784b
relation.isAuthorOfPublicationa6f7a119-fbc9-439f-8dd9-0bbc9ec82fad
relation.isAuthorOfPublicationa2aa1be8-574c-4e0b-afd6-d3c61efad820
relation.isAuthorOfPublication33f4af65-7ddf-46f0-8b44-a7470a8ba2bf
relation.isAuthorOfPublication.latestForDiscovery33f4af65-7ddf-46f0-8b44-a7470a8ba2bf

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
artigopublicado_HCIST2019_TransferLearning.pdf
Size:
865.27 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: