Publication
Long-term person reidentification: challenges and outlook
| dc.contributor.author | Manhães, Anderson | |
| dc.contributor.author | Matos, Gabriel | |
| dc.contributor.author | Cardoso, Douglas O. | |
| dc.contributor.author | Pinto, Milena F. | |
| dc.contributor.author | Colares, Jeferson | |
| dc.contributor.author | Leitão, Paulo | |
| dc.contributor.author | Brandão, Diego | |
| dc.contributor.author | Haddad, Diego | |
| dc.date.accessioned | 2023-03-06T15:36:39Z | |
| dc.date.available | 2023-03-06T15:36:39Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | Person reidentification, i.e., retrieving a person of interest across several non-overlapping cameras, is a task that is far from trivial. Despite its great commercial value and wide range of applications (e.g., surveillance, intelligent environments, forensics, service robotics, marketing), it remains unsolved, even when the individuals do not change clothes during the recognition period. This paper provides an outlook on long-term person reidentification, an emerging research topic regarding when consecutive acquisitions of an individual can be found apart for days or even months, making such a task even more challenging. A long-term reidentification system using face recognition is presented to emphasize current techniques’ limitations. | pt_PT |
| dc.description.sponsorship | FCT (Fundação para a Ciência e a Tecnologia), under the project UIDB/05567/2020. | |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.citation | Manhães, Anderson; Matos, Gabriel; Cardoso, Douglas O.; Pinto, Milena F.; Colares, Jeferson; Leitão, Paulo; Brandão, Diego; Haddad, Diego (2022). Long-term person reidentification: challenges and outlook. In 2nd International Conference on Optimization, Learning Algorithms and Applications, OL2A 2022. Bragança. 1754, p. 357-372 | pt_PT |
| dc.identifier.doi | 10.1007/978-3-031-23236-7_25 | pt_PT |
| dc.identifier.uri | http://hdl.handle.net/10198/27494 | |
| dc.language.iso | eng | pt_PT |
| dc.peerreviewed | yes | pt_PT |
| dc.publisher | Springer | pt_PT |
| dc.relation | Smart Cities Research Center | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
| dc.subject | Long-term person ReID | pt_PT |
| dc.subject | Deep learning | pt_PT |
| dc.subject | Computer vision | pt_PT |
| dc.subject | Multimodal retrieval | pt_PT |
| dc.title | Long-term person reidentification: challenges and outlook | pt_PT |
| dc.type | conference paper | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Smart Cities Research Center | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05567%2F2020/PT | |
| oaire.citation.conferencePlace | Bragança | pt_PT |
| oaire.citation.endPage | 372 | pt_PT |
| oaire.citation.startPage | 357 | pt_PT |
| oaire.citation.title | 2nd International Conference on Optimization, Learning Algorithms and Applications, OL2A 2022 | pt_PT |
| oaire.citation.volume | 1754 | pt_PT |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| person.familyName | Leitão | |
| person.givenName | Paulo | |
| person.identifier | A-8390-2011 | |
| person.identifier.ciencia-id | 8316-8F13-DA71 | |
| person.identifier.orcid | 0000-0002-2151-7944 | |
| person.identifier.scopus-author-id | 35584388900 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| rcaap.rights | restrictedAccess | pt_PT |
| rcaap.type | conferenceObject | pt_PT |
| relation.isAuthorOfPublication | 68d9eb25-ad4f-439b-aeb2-35e8708644cc | |
| relation.isAuthorOfPublication.latestForDiscovery | 68d9eb25-ad4f-439b-aeb2-35e8708644cc | |
| relation.isProjectOfPublication | 11ff9952-8c2b-4173-aeb9-97873488a977 | |
| relation.isProjectOfPublication.latestForDiscovery | 11ff9952-8c2b-4173-aeb9-97873488a977 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Long-Term Person Reidentification.pdf
- Size:
- 1.86 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.75 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
