Repository logo
 
Publication

Long-term person reidentification: challenges and outlook

dc.contributor.authorManhães, Anderson
dc.contributor.authorMatos, Gabriel
dc.contributor.authorCardoso, Douglas O.
dc.contributor.authorPinto, Milena F.
dc.contributor.authorColares, Jeferson
dc.contributor.authorLeitão, Paulo
dc.contributor.authorBrandão, Diego
dc.contributor.authorHaddad, Diego
dc.date.accessioned2023-03-06T15:36:39Z
dc.date.available2023-03-06T15:36:39Z
dc.date.issued2022
dc.description.abstractPerson reidentification, i.e., retrieving a person of interest across several non-overlapping cameras, is a task that is far from trivial. Despite its great commercial value and wide range of applications (e.g., surveillance, intelligent environments, forensics, service robotics, marketing), it remains unsolved, even when the individuals do not change clothes during the recognition period. This paper provides an outlook on long-term person reidentification, an emerging research topic regarding when consecutive acquisitions of an individual can be found apart for days or even months, making such a task even more challenging. A long-term reidentification system using face recognition is presented to emphasize current techniques’ limitations.pt_PT
dc.description.sponsorshipFCT (Fundação para a Ciência e a Tecnologia), under the project UIDB/05567/2020.
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationManhães, Anderson; Matos, Gabriel; Cardoso, Douglas O.; Pinto, Milena F.; Colares, Jeferson; Leitão, Paulo; Brandão, Diego; Haddad, Diego (2022). Long-term person reidentification: challenges and outlook. In 2nd International Conference on Optimization, Learning Algorithms and Applications, OL2A 2022. Bragança. 1754, p. 357-372pt_PT
dc.identifier.doi10.1007/978-3-031-23236-7_25pt_PT
dc.identifier.urihttp://hdl.handle.net/10198/27494
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringerpt_PT
dc.relationSmart Cities Research Center
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectLong-term person ReIDpt_PT
dc.subjectDeep learningpt_PT
dc.subjectComputer visionpt_PT
dc.subjectMultimodal retrievalpt_PT
dc.titleLong-term person reidentification: challenges and outlookpt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleSmart Cities Research Center
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05567%2F2020/PT
oaire.citation.conferencePlaceBragançapt_PT
oaire.citation.endPage372pt_PT
oaire.citation.startPage357pt_PT
oaire.citation.title2nd International Conference on Optimization, Learning Algorithms and Applications, OL2A 2022pt_PT
oaire.citation.volume1754pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameLeitão
person.givenNamePaulo
person.identifierA-8390-2011
person.identifier.ciencia-id8316-8F13-DA71
person.identifier.orcid0000-0002-2151-7944
person.identifier.scopus-author-id35584388900
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication68d9eb25-ad4f-439b-aeb2-35e8708644cc
relation.isAuthorOfPublication.latestForDiscovery68d9eb25-ad4f-439b-aeb2-35e8708644cc
relation.isProjectOfPublication11ff9952-8c2b-4173-aeb9-97873488a977
relation.isProjectOfPublication.latestForDiscovery11ff9952-8c2b-4173-aeb9-97873488a977

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Long-Term Person Reidentification.pdf
Size:
1.86 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: