Repository logo
 
Publication

A machine learning-based early forest fire detection system utilizing vision and sensors’ fusion technologies

dc.contributor.authorKhalifeh, Ala'
dc.contributor.authorNassar, AbdelHamid
dc.contributor.authorAlAjlouni, Mohammad M.
dc.contributor.authorAlNabelsi, Anas
dc.contributor.authorAlrawashdeh, Zaid
dc.contributor.authorHejazi, Bashar
dc.contributor.authorAlwardat, Radi
dc.contributor.authorLima, José
dc.date.accessioned2023-03-03T12:28:00Z
dc.date.available2023-03-03T12:28:00Z
dc.date.issued2022
dc.description.abstractThe paper aims at utilizing machine learning (ML) towards designing an early warning forest fire detection system. With the aid of the Internet of Things (IoT) and smart edge computing, an embedded system that utilizes sensors’ fusion technology, machine vision and ML to early detect forest fire has been proposed. Different from most of the proposed fire detection systems in the literature, which either utilize vision or sensors’-based approaches to detect the fire, the proposed system utilizes both approaches jointly, which in turn will make it more accurate for fire detection. Furthermore, this paper focuses on implementing the proposed system utilizing a smart edge node and discusses the incurred technical challenges and how they have been solved.pt_PT
dc.description.sponsorshipThis work has been in part supported by King Abdullah II Fund for development. Grant No.2022/6 and Jordan Design and Development Bureau(JODDB).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationKhalifeh, Ala'; Nassar, AbdelHamid; AlAjlouni, Mohammad M.; AlNabelsi, Anas; Alrawashdeh, Zaid; Hejazi, Bashar; Alwardat, Radi; Lima, José (2022). A machine learning-based early forest fire detection system utilizing vision and sensors’ fusion technologies. In 4th IEEE Middle East and North Africa COMMunications Conference, MENACOMM 2022. Ammanpt_PT
dc.identifier.doi10.1109/MENACOMM57252.2022.9998196pt_PT
dc.identifier.urihttp://hdl.handle.net/10198/27446
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectFire detectorspt_PT
dc.subjectFire hazardspt_PT
dc.subjectFirespt_PT
dc.subjectInternet of thingspt_PT
dc.titleA machine learning-based early forest fire detection system utilizing vision and sensors’ fusion technologiespt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceAmmanpt_PT
oaire.citation.endPage234pt_PT
oaire.citation.startPage229pt_PT
oaire.citation.title4th IEEE Middle East and North Africa COMMunications Conference, MENACOMM 2022pt_PT
person.familyNameLima
person.givenNameJosé
person.identifierR-000-8GD
person.identifier.ciencia-id6016-C902-86A9
person.identifier.orcid0000-0001-7902-1207
person.identifier.ridL-3370-2014
person.identifier.scopus-author-id55851941311
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationd88c2b2a-efc2-48ef-b1fd-1145475e0055
relation.isAuthorOfPublication.latestForDiscoveryd88c2b2a-efc2-48ef-b1fd-1145475e0055

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Learning.pdf
Size:
1.66 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: