Publication
Assessing the Reliability of AI-Based Angle Detection for Shoulder and Elbow Rehabilitation
dc.contributor.author | Klein, Luan C. | |
dc.contributor.author | Chellal, Arezki Abderrahim | |
dc.contributor.author | Grilo, Vinicius F.S.B. | |
dc.contributor.author | Gonçalves, José | |
dc.contributor.author | Pacheco, Maria F. | |
dc.contributor.author | Fernandes, Florbela P. | |
dc.contributor.author | Monteiro, Fernando C. | |
dc.contributor.author | Lima, José | |
dc.date.accessioned | 2024-10-08T14:46:00Z | |
dc.date.available | 2024-10-08T14:46:00Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Angle assessment is crucial in rehabilitation and significantly influences physiotherapists’ decision-making. Although visual inspection is commonly used, it is known to be approximate. This work aims to be a preliminary study about using the AI image-based to assess upper limb joint angles. Two main frameworks were evaluated: MediaPipe and Yolo v7. The study was performed with 28 participants performing four upper limb movements. The results showed that Yolo v7 achieved greater estimation accuracy than Mediapipe, with MAEs of around 5◦ and 17◦, respectively. However, even with better results, Yolo v7 showed some limitations, including the point of detection in only a 2D plane, the higher computational power required to enable detection, and the difficulty of performing movements requiring more than one degree of Freedom (DOF). Nevertheless, this study highlights the detection capabilities of AI approaches, showing be a promising approach for measuring angles in rehabilitation activities, representing a cost-effective and easyto- implement solution. | pt_PT |
dc.description.sponsorship | This work has been supported by SmartHealth - Inteligência Artificial para Cuidados de Saúde Personalizados ao Longo da Vida, under the project ref. NORTE-01-0145-FEDER-000045. The authors are grateful to the Foundation for Science and Technology (FCT) for financial support under ref. FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021). Arezki A. Chellal is grateful to the FCT Foundation for its support through the FCT PhD scholarship with ref. UI/BD/154484/2022. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Klein, Luan C.; Chellal, Arezki Abderrahim; Grilo, Vinicius; Gonçalves, José; Pacheco, Maria F.; Fernandes, Florbela P.; Monteiro, Fernando C.; Lima, José (2024). Assessing the Reliability of AI-Based Angle Detection for Shoulder and Elbow Rehabilitation. In 3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023). Cham: Springer Nature, Vol. 2, p. 3–18. ISBN 978-3-031-53035-7 | pt_PT |
dc.identifier.doi | 10.1007/978-3-031-53036-4_1 | pt_PT |
dc.identifier.isbn | 978-3-031-53035-7 | |
dc.identifier.isbn | 978-3-031-53036-4 | |
dc.identifier.uri | http://hdl.handle.net/10198/30381 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | Springer Nature | pt_PT |
dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
dc.relation | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Join Angle Measurement | pt_PT |
dc.subject | Artificial Intelligence | pt_PT |
dc.subject | Motion Capture | pt_PT |
dc.subject | Robotic Rehabilitation | pt_PT |
dc.title | Assessing the Reliability of AI-Based Angle Detection for Shoulder and Elbow Rehabilitation | pt_PT |
dc.type | conference paper | |
dspace.entity.type | Publication | |
oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
oaire.awardTitle | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/POR_NORTE/UI%2FBD%2F154484%2F2022/PT | |
oaire.citation.endPage | 18 | pt_PT |
oaire.citation.startPage | 3 | pt_PT |
oaire.citation.title | 3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023) | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | POR_NORTE | |
person.familyName | Chellal | |
person.familyName | Gonçalves | |
person.familyName | Pacheco | |
person.familyName | Fernandes | |
person.familyName | Monteiro | |
person.familyName | Lima | |
person.givenName | Arezki Abderrahim | |
person.givenName | José | |
person.givenName | Maria F. | |
person.givenName | Florbela P. | |
person.givenName | Fernando C. | |
person.givenName | José | |
person.identifier | R-000-7ZW | |
person.identifier | R-000-8GD | |
person.identifier.ciencia-id | 8215-2A5A-EADB | |
person.identifier.ciencia-id | 8112-DCE2-D025 | |
person.identifier.ciencia-id | F319-DAC3-8F15 | |
person.identifier.ciencia-id | 501D-6FD0-CC53 | |
person.identifier.ciencia-id | 2019-BDBF-10E2 | |
person.identifier.ciencia-id | 6016-C902-86A9 | |
person.identifier.orcid | 0000-0002-9190-6865 | |
person.identifier.orcid | 0000-0002-5499-1730 | |
person.identifier.orcid | 0000-0001-7915-0391 | |
person.identifier.orcid | 0000-0001-9542-4460 | |
person.identifier.orcid | 0000-0002-1421-8006 | |
person.identifier.orcid | 0000-0001-7902-1207 | |
person.identifier.rid | B-8547-2018 | |
person.identifier.rid | H-9213-2016 | |
person.identifier.rid | L-3370-2014 | |
person.identifier.scopus-author-id | 48361230200 | |
person.identifier.scopus-author-id | 36802474600 | |
person.identifier.scopus-author-id | 35179471000 | |
person.identifier.scopus-author-id | 8986162600 | |
person.identifier.scopus-author-id | 55851941311 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | restrictedAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 59a3f1c2-d0ee-4fb2-b27a-025ebfd8f20b | |
relation.isAuthorOfPublication | 6a3b0b39-7fe9-4450-94f4-ced3941947da | |
relation.isAuthorOfPublication | e56596ca-3238-4fde-ace1-abb363a222e8 | |
relation.isAuthorOfPublication | 1f7a9fde-7a4d-4b2c-8f9d-dab571163c33 | |
relation.isAuthorOfPublication | 363b6c37-282c-4cd6-bb54-3c97cc700d78 | |
relation.isAuthorOfPublication | d88c2b2a-efc2-48ef-b1fd-1145475e0055 | |
relation.isAuthorOfPublication.latestForDiscovery | 363b6c37-282c-4cd6-bb54-3c97cc700d78 | |
relation.isProjectOfPublication | 6e01ddc8-6a82-4131-bca6-84789fa234bd | |
relation.isProjectOfPublication | d0a17270-80a8-4985-9644-a04c2a9f2dff | |
relation.isProjectOfPublication | 6255046e-bc79-4b82-8884-8b52074b4384 | |
relation.isProjectOfPublication | bd5697ef-a1e7-4323-924b-5022b07875b7 | |
relation.isProjectOfPublication.latestForDiscovery | 6e01ddc8-6a82-4131-bca6-84789fa234bd |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Assessing the Reliability of AI-Based.pdf
- Size:
- 2.23 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.75 KB
- Format:
- Item-specific license agreed upon to submission
- Description: