Repository logo
 
Publication

AquaVitae: Innovating Personalized Meal Recommendations for Enhanced Nutritional Health

dc.contributor.authorMarcuzzo, Henrique S.
dc.contributor.authorPereira, Maria J. V.
dc.contributor.authorAlves, Paulo
dc.contributor.authorFoleis, Juliano H.
dc.date.accessioned2024-10-08T10:10:41Z
dc.date.available2024-10-08T10:10:41Z
dc.date.issued2024
dc.description.abstractIn this study, we present an advanced recommendation system specifically engineered to aid nutritionists in developing personalized, optimized nutritional plans. Our system operates by amassing a broad range of data including users’ preferences, dietary restrictions, and specific nutritional requirements, which it then utilizes to craft a diverse assortment of meal choices individually tailored to each user. A key innovation of our system is its ability to facilitate continuous diet monitoring, eliminating the need for repeated consultations to update the nutritional plans. This allows for real-time dietary adjustments and provides nutritionists with more accurate data for subsequent plans. Additionally, the system prioritizes the inclusion of thermogenic foods to maximize nutritional efficiency, while simultaneously providing a pleasurable experience for the users. This combination of sophisticated data collection and innovative food recommendations underscores the potential of our system to improve the process of nutritional counseling and the generation of nutritional plans, bringing notable benefits to both practitioners and clients alike.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMarcuzzo, Henrique S.; Pereira, Maria J. V.; Alves, Paulo; Foleis, Juliano H. (2024). AquaVitae: Innovating Personalized Meal Recommendations for Enhanced Nutritional Health. In 3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023). Cham: Springer Nature, Vol. 1, p. 148–161. ISBN 978-3-031-53024-1pt_PT
dc.identifier.doi10.1007/978-3-031-53025-8_11pt_PT
dc.identifier.isbn978-3-031-53024-1
dc.identifier.isbn978-3-031-53025-8
dc.identifier.urihttp://hdl.handle.net/10198/30355
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer Naturept_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectRecommendation Systempt_PT
dc.subjectThermal-Basedpt_PT
dc.subjectNutritional Planpt_PT
dc.subjectFood Rankingpt_PT
dc.titleAquaVitae: Innovating Personalized Meal Recommendations for Enhanced Nutritional Healthpt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.endPage161pt_PT
oaire.citation.startPage148pt_PT
oaire.citation.title3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023)pt_PT
person.familyNameAlves
person.givenNamePaulo
person.identifier.ciencia-idC319-FC42-5B6B
person.identifier.orcid0000-0002-0100-8691
person.identifier.scopus-author-id55834442100
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication43d3b0cd-8fd9-4194-a9df-9cca66f8726b
relation.isAuthorOfPublication.latestForDiscovery43d3b0cd-8fd9-4194-a9df-9cca66f8726b

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
AquaVitae.pdf
Size:
1.58 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: