Logo do repositório
 
Publicação

A Neural Network-Based Approach to Identifying Wrinkles and Recommending Cosmetic Products

dc.contributor.authorTonello, Guilherme de M.
dc.contributor.authorAlves, Paulo
dc.contributor.authorOrtoncelli, André Roberto
dc.contributor.authorPereira, Maria João
dc.date.accessioned2025-04-24T15:58:37Z
dc.date.available2025-04-24T15:58:37Z
dc.date.issued2024
dc.description.abstractSkincare has become a constant demand among the population, who are increasingly concerned about their health. Furthermore, environmental issues arouse the interest of the masses in natural and sustainable products. This project proposes an approach for recommending thermal-based products based on a set of information provided by the user, combined with the results of computer vision algorithms (to identify the age and occurrence of wrinkles on the user’s forehead). A list of recommended products is generated Based on the profile determined for the user. To predict wrinkles, for each facial image sent by the user, we apply a pre-processing step that segments and prepares the region of interest, which a CNN will process. As a CNN, we used the VGG16 architecture trained using a transfer learning and fine-tuning strategy, which improved the results obtained, reaching an accuracy of 92% in classifying wrinkles. An algorithm provided by the Deepface tool is used to predict the user’s age, based on the sent picture.Which is crossed with the user’s information to determine a level of aging in order to improve the quality of the recommended products.eng
dc.description.sponsorshipThis work was supported by “Fundação La Caixa” and by “Fundação para a Ciência e a Tecnologia” under the scope of the project “Aquae Vitae - Água Termal como Fonte de Vida e Saúde” through the Promove Program (“Projetos I&D Mobilizadores”) and also this work was supported by national funds through FCT/MCTES (PIDDAC): CeDRI, UIDB/05757/2020 (DOI: 10.54499/UIDB/05757/2020) and UIDP/05757/2020 (DOI: 10.54499/UIDP/05757/2020); SusTEC, LA/P/0007/2020 (DOI: 10.54499/LA/P/0007/2020). Portions of the research in this paper use the FERET database of facial images collected under the FERET program, sponsored by the DOD Counterdrug Technology Development Program Office
dc.identifier.citationTonello, Guilherme de M.; Varanda Pereira, Maria João; Alves, Paulo; Ortoncelli, André Roberto (2025). A Neural Network-Based Approach to Identifying Wrinkles and Recommending Cosmetic Products. In Optimization, Learning Algorithms and Applications (OL2A 2024), Part I. Cham: Springer Nature. p. 173-188. eISBN 978-3-031-77426-3
dc.identifier.doi10.1007/978-3-031-77426-3_12
dc.identifier.isbn9783031774256
dc.identifier.isbn9783031774263
dc.identifier.urihttp://hdl.handle.net/10198/34440
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer Nature
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
dc.relation.ispartofCommunications in Computer and Information Science
dc.relation.ispartofOptimization, Learning Algorithms and Applications
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleA Neural Network-Based Approach to Identifying Wrinkles and Recommending Cosmetic Productseng
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT
oaire.citation.endPage188
oaire.citation.startPage173
oaire.citation.title4th International Conference on Optimization, Learning Algorithms and Applications, OL2A 2024
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameAlves
person.familyNamePereira
person.givenNamePaulo
person.givenNameMaria João
person.identifier.ciencia-idC319-FC42-5B6B
person.identifier.ciencia-idC912-4A49-A3B3
person.identifier.orcid0000-0002-0100-8691
person.identifier.orcid0000-0001-6323-0071
person.identifier.ridG-5999-2011
person.identifier.scopus-author-id55834442100
person.identifier.scopus-author-id13907870300
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublication43d3b0cd-8fd9-4194-a9df-9cca66f8726b
relation.isAuthorOfPublicationa20ccfa6-4e84-4c25-ab0d-8d6ba196ffc2
relation.isAuthorOfPublication.latestForDiscovery43d3b0cd-8fd9-4194-a9df-9cca66f8726b
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication6255046e-bc79-4b82-8884-8b52074b4384
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Ficheiros

Principais
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
A Neural Network-Based.pdf
Tamanho:
5.28 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.75 KB
Formato:
Item-specific license agreed upon to submission
Descrição: