Repository logo
 
Publication

Deep learning-based localization approach for autonomous robots in the robotAtFactory 4.0 competition

dc.contributor.authorKlein, Luan C.
dc.contributor.authorMendes, João
dc.contributor.authorBraun, João
dc.contributor.authorMartins, Felipe N.
dc.contributor.authorOliveira, Andre Schneider
dc.contributor.authorCosta, Paulo Gomes da
dc.contributor.authorWörtche, Heinrich
dc.contributor.authorLima, José
dc.date.accessioned2024-05-21T13:50:48Z
dc.date.available2024-05-21T13:50:48Z
dc.date.issued2024
dc.description.abstractAccurate localization in autonomous robots enables effective decision-making within their operating environment. Various methods have been developed to address this challenge, encompassing traditional techniques, fiducial marker utilization, and machine learning approaches. This work proposes a deep-learning solution employing Convolutional Neural Networks (CNN) to tackle the localization problem, specifically in the context of the RobotAtFactory 4.0 competition. The proposed approach leverages transfer learning from the pre-trained VGG16 model to capitalize on its existing knowledge. To validate the effectiveness of the approach, a simulated scenario was employed. The experimental results demonstrated an error within the millimeter scale and rapid response times in milliseconds. Notably, the presented approach offers several advantages, including a consistent model size regardless of the number of training images utilized and the elimination of the need to know the absolute positions of the fiducial markers.pt_PT
dc.description.sponsorshipThe project that gave rise to these results received the support of a fellowship from “la Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/DI20/11780028. Jo˜ao Braun is a PhD Student at the Faculty of Engineering, University of Porto (FEUP).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationKlein, Luan C.; Mendes, João; Braun, João; Martins, Felipe N.; Oliveira, Andre Schneider de; Costa, Paulo; Wörtche, Heinrich; Lima, José (2024). Deep learning-based localization approach for autonomous robots in the robotAtFactory 4.0 competition. Communications in Computer and Information Science. In Third International Conference, OL2A 2023. Ponta Delgada,Portugal. 1982, p. 181-194pt_PT
dc.identifier.doi10.1007/978-3-031-53036-4_13pt_PT
dc.identifier.issn1865-0929
dc.identifier.urihttp://hdl.handle.net/10198/29789
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectCNNpt_PT
dc.subjectIndoor localizationpt_PT
dc.subjectRobotic competitionpt_PT
dc.titleDeep learning-based localization approach for autonomous robots in the robotAtFactory 4.0 competitionpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlacePonta Delgada,Portugalpt_PT
oaire.citation.endPage194pt_PT
oaire.citation.startPage181pt_PT
oaire.citation.titleThird International Conference, OL2A 2023pt_PT
oaire.citation.volume1982pt_PT
person.familyNameMendes
person.familyNameBraun
person.familyNameLima
person.givenNameJoão
person.givenNameJoão A.
person.givenNameJosé
person.identifier2726655
person.identifierR-000-8GD
person.identifier.ciencia-idEA1F-844D-6BA9
person.identifier.ciencia-idBF13-D66B-7D08
person.identifier.ciencia-id6016-C902-86A9
person.identifier.orcid0000-0003-0979-8314
person.identifier.orcid0000-0003-0276-4314
person.identifier.orcid0000-0001-7902-1207
person.identifier.ridL-3370-2014
person.identifier.scopus-author-id57225794972
person.identifier.scopus-author-id57211244317
person.identifier.scopus-author-id55851941311
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationb5c9de22-cf9e-47b8-b7a4-26e08fb12b28
relation.isAuthorOfPublicationb8dfcbd7-1b89-48f3-afee-3e7d3f3c90d4
relation.isAuthorOfPublicationd88c2b2a-efc2-48ef-b1fd-1145475e0055
relation.isAuthorOfPublication.latestForDiscoveryd88c2b2a-efc2-48ef-b1fd-1145475e0055

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Deep_LearningBased_Localization.pdf
Size:
1.32 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: