Publication
Deep learning-based localization approach for autonomous robots in the robotAtFactory 4.0 competition
dc.contributor.author | Klein, Luan C. | |
dc.contributor.author | Mendes, João | |
dc.contributor.author | Braun, João | |
dc.contributor.author | Martins, Felipe N. | |
dc.contributor.author | Oliveira, Andre Schneider | |
dc.contributor.author | Costa, Paulo Gomes da | |
dc.contributor.author | Wörtche, Heinrich | |
dc.contributor.author | Lima, José | |
dc.date.accessioned | 2024-05-21T13:50:48Z | |
dc.date.available | 2024-05-21T13:50:48Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Accurate localization in autonomous robots enables effective decision-making within their operating environment. Various methods have been developed to address this challenge, encompassing traditional techniques, fiducial marker utilization, and machine learning approaches. This work proposes a deep-learning solution employing Convolutional Neural Networks (CNN) to tackle the localization problem, specifically in the context of the RobotAtFactory 4.0 competition. The proposed approach leverages transfer learning from the pre-trained VGG16 model to capitalize on its existing knowledge. To validate the effectiveness of the approach, a simulated scenario was employed. The experimental results demonstrated an error within the millimeter scale and rapid response times in milliseconds. Notably, the presented approach offers several advantages, including a consistent model size regardless of the number of training images utilized and the elimination of the need to know the absolute positions of the fiducial markers. | pt_PT |
dc.description.sponsorship | The project that gave rise to these results received the support of a fellowship from “la Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/DI20/11780028. Jo˜ao Braun is a PhD Student at the Faculty of Engineering, University of Porto (FEUP). | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Klein, Luan C.; Mendes, João; Braun, João; Martins, Felipe N.; Oliveira, Andre Schneider de; Costa, Paulo; Wörtche, Heinrich; Lima, José (2024). Deep learning-based localization approach for autonomous robots in the robotAtFactory 4.0 competition. Communications in Computer and Information Science. In Third International Conference, OL2A 2023. Ponta Delgada,Portugal. 1982, p. 181-194 | pt_PT |
dc.identifier.doi | 10.1007/978-3-031-53036-4_13 | pt_PT |
dc.identifier.issn | 1865-0929 | |
dc.identifier.uri | http://hdl.handle.net/10198/29789 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | CNN | pt_PT |
dc.subject | Indoor localization | pt_PT |
dc.subject | Robotic competition | pt_PT |
dc.title | Deep learning-based localization approach for autonomous robots in the robotAtFactory 4.0 competition | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.citation.conferencePlace | Ponta Delgada,Portugal | pt_PT |
oaire.citation.endPage | 194 | pt_PT |
oaire.citation.startPage | 181 | pt_PT |
oaire.citation.title | Third International Conference, OL2A 2023 | pt_PT |
oaire.citation.volume | 1982 | pt_PT |
person.familyName | Mendes | |
person.familyName | Braun | |
person.familyName | Lima | |
person.givenName | João | |
person.givenName | João A. | |
person.givenName | José | |
person.identifier | 2726655 | |
person.identifier | R-000-8GD | |
person.identifier.ciencia-id | EA1F-844D-6BA9 | |
person.identifier.ciencia-id | BF13-D66B-7D08 | |
person.identifier.ciencia-id | 6016-C902-86A9 | |
person.identifier.orcid | 0000-0003-0979-8314 | |
person.identifier.orcid | 0000-0003-0276-4314 | |
person.identifier.orcid | 0000-0001-7902-1207 | |
person.identifier.rid | L-3370-2014 | |
person.identifier.scopus-author-id | 57225794972 | |
person.identifier.scopus-author-id | 57211244317 | |
person.identifier.scopus-author-id | 55851941311 | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | b5c9de22-cf9e-47b8-b7a4-26e08fb12b28 | |
relation.isAuthorOfPublication | b8dfcbd7-1b89-48f3-afee-3e7d3f3c90d4 | |
relation.isAuthorOfPublication | d88c2b2a-efc2-48ef-b1fd-1145475e0055 | |
relation.isAuthorOfPublication.latestForDiscovery | d88c2b2a-efc2-48ef-b1fd-1145475e0055 |