Repository logo
 
Publication

Prediction of Health of Corals Mussismilia hispida Based on the Microorganisms Present in their Microbiome

dc.contributor.authorBarque, Barry Malick
dc.contributor.authorRodrigues, Pedro João
dc.contributor.authorPaula Filho, Pedro Luiz de
dc.contributor.authorPeixoto, Raquel Silva
dc.contributor.authorLeite, Deborah Catharine de Assis
dc.date.accessioned2024-10-09T08:53:43Z
dc.date.available2024-10-09T08:53:43Z
dc.date.issued2024
dc.description.abstractOne of the most diverse and productive marine ecosystems in the world are the corals, providing not only tourism but also an important economic contribution to the countries that have them on their coasts. Thanks to genome sequencing techniques, it is possible to identify the microorganisms that form the coral microbiome. The generation of large amounts of data, thanks to the low cost of sequencing since 2005, provides an opening for the use of artificial neural networks for the advancement of sciences such as biology and medicine. This work aims to predict the healthy microbiome present in samples of Mussismilia hispida coral, using machine learning algorithms, in which the algorithms SVM, Decision Tree, and Random Forest achieved a rate of 61%, 74%, and 72%, respectively. Additionally, it aims to identify possible microorganisms related to the disease in question in corals.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationBarque, Barry Malick; Rodrigues, Pedro João Soares; Paula Filho, Pedro Luiz de; Peixoto, Raquel Silva; Leite, Deborah Catharine de Assis (2024). Prediction of Health of Corals Mussismilia hispida Based on the Microorganisms Present in their Microbiome. In 3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023). Cham: Springer Nature, Vol. 1, p. 409–423. ISBN 978-3-031-53024-1pt_PT
dc.identifier.doi10.1007/978-3-031-53025-8_28pt_PT
dc.identifier.isbn978-3-031-53024-1
dc.identifier.isbn978-3-031-53025-8
dc.identifier.urihttp://hdl.handle.net/10198/30390
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer Naturept_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectCoral reefpt_PT
dc.subjectMicrobiomept_PT
dc.subjectMachine learning algorithmpt_PT
dc.titlePrediction of Health of Corals Mussismilia hispida Based on the Microorganisms Present in their Microbiomept_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.endPage423pt_PT
oaire.citation.startPage409pt_PT
oaire.citation.title3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023)pt_PT
person.familyNameRodrigues
person.givenNamePedro João
person.identifier.ciencia-id1316-21BB-9015
person.identifier.orcid0000-0002-0555-2029
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication6c5911a6-b62b-4876-9def-60096b52383a
relation.isAuthorOfPublication.latestForDiscovery6c5911a6-b62b-4876-9def-60096b52383a

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Prediction of Health of Corals.pdf
Size:
3.98 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: