Repository logo
 
Publication

Segmentation of fetal 2D images with deep learning: a review

dc.contributor.authorRodrigues, Pedro João
dc.contributor.authorRehman, M. Anees ur
dc.contributor.authorIgrejas, Getúlio
dc.date.accessioned2024-01-22T09:06:30Z
dc.date.available2024-01-22T09:06:30Z
dc.date.issued2022
dc.description.abstractImage segmentation plays a vital role in providing sustainable medical care in this evolving biomedical image processing technology. Nowadays, it is considered one of the most important research directions in the computer vision field. Since the last decade, deep learning-based medical image processing has become a research hotspot due to its exceptional performance. In this paper, we present a review of different deep learning techniques used to segment fetal 2D images. First, we explain the basic ideas of each approach and then thoroughly investigate the methods used for the segmentation of fetal images. Secondly, the results and accuracy of different approaches are also discussed. The dataset details used for assessing the performance of the respective method are also documented. Based on the review studies, the challenges and future work are also pointed out at the end. As a result, it is shown that deep learning techniques are very effective in the segmentation of fetal 2D images.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationRodrigues, Pedro João; Rehman, M. Anees ur; Igrejas, Getúlio (2022). Segmentation of fetal 2D images with deep learning: a review. In 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). p. 1-8. ISBN 978-1-6654-7095-7pt_PT
dc.identifier.doi10.1109/ICECCME55909.2022.9988625pt_PT
dc.identifier.isbn978-1-6654-7095-7
dc.identifier.urihttp://hdl.handle.net/10198/29275
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectImage segmentationpt_PT
dc.subjectFetal imagespt_PT
dc.subjectDeep learning techniquespt_PT
dc.subjectCNNpt_PT
dc.titleSegmentation of fetal 2D images with deep learning: a reviewpt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.endPage8pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.title2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)pt_PT
person.familyNameRodrigues
person.familyNameIgrejas
person.givenNamePedro João
person.givenNameGetúlio
person.identifier.ciencia-id1316-21BB-9015
person.identifier.orcid0000-0002-0555-2029
person.identifier.orcid0000-0002-6820-8858
person.identifier.ridM-8571-2013
person.identifier.scopus-author-id47761255900
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication6c5911a6-b62b-4876-9def-60096b52383a
relation.isAuthorOfPublicationab4092ec-d1b1-4fe0-b65a-efba1310fd5a
relation.isAuthorOfPublication.latestForDiscovery6c5911a6-b62b-4876-9def-60096b52383a

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Segmentation_of_Fetal_2D_Images.pdf
Size:
240.49 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: