Repository logo
 
Publication

Deep convolutional neural networks applied to hand keypoints estimation

dc.contributor.authorSantos, Bruno M.
dc.contributor.authorPais, Pedro
dc.contributor.authorRibeiro, Francisco M.
dc.contributor.authorLima, José
dc.contributor.authorGoncalves, Gil
dc.contributor.authorPinto, Vítor H.
dc.date.accessioned2020-04-30T09:42:12Z
dc.date.available2020-04-30T09:42:12Z
dc.date.issued2023
dc.description.abstractAccurate estimation of hand shape and position is an important task in various applications, such as human-computer interaction, human-robot interaction, and virtual and augmented reality. In this paper, it is proposed a method to estimate the hand keypoints from single and colored images utilizing the pre-trained deep convolutional neural networks VGG-16 and VGG-19. The method is evaluated on the FreiHAND dataset, and the performance of the two neural networks is compared. The best results were achieved by the VGG-19, with average estimation errors of 7.40 pixels and 11.36 millimeters for the best cases of two-dimensional and three-dimensional hand keypoints estimation, respectively.pt_PT
dc.description.sponsorshipThe authors acknowledge the support of R&D Unit SYSTEC Base (UIDB/00147/2020) and Programmatic (UIDP/00147/2020) and the ARISE Associated Laboratory (LA/P/0112/2020), as well as the support of projects: Continental FoF, with reference POCI-01-0247-FEDER- 047512, co-funded by FEDER, through COMPETE 2020, Digitalizac¸ ˜ao da Arte Humana (Cibertoque), with reference POCI-01-0247-FEDER-072627, co-funded by FEDER, through COMPETE 2020 and Next-Gen Quality Control IoRT System with reference POCI-01-0247-FEDER-072616, co-funded by FEDER, through COMPETE 2020.
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationSantos, Bruno M.; Pais, Pedro; Ribeiro, Francisco M.; Lima, José; Goncalves, Gil; Pinto, Vítor H. (2023). Deep convolutional neural networks applied to hand keypoints estimation. In IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). Tomar, Portugal – April 26-27, 2023. eISSN 2573-9387. p. 93-98pt_PT
dc.identifier.doi10.1109/ICARSC58346.2023.10129621
dc.identifier.eissn2573-9387
dc.identifier.issn2573-9360
dc.identifier.urihttp://hdl.handle.net/10198/21876
dc.language.isoengpt_PT
dc.publisherIEEEpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectHand keypoints estimationpt_PT
dc.subjectConvolutional neural networkpt_PT
dc.subjectVGGpt_PT
dc.subjectFreiHAND
dc.titleDeep convolutional neural networks applied to hand keypoints estimationpt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.titleIEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC)pt_PT
person.familyNameLima
person.givenNameJosé
person.identifierR-000-8GD
person.identifier.ciencia-id6016-C902-86A9
person.identifier.orcid0000-0001-7902-1207
person.identifier.ridL-3370-2014
person.identifier.scopus-author-id55851941311
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationd88c2b2a-efc2-48ef-b1fd-1145475e0055
relation.isAuthorOfPublication.latestForDiscoveryd88c2b2a-efc2-48ef-b1fd-1145475e0055

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deep_Convolutional_Neural.pdf
Size:
2.48 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: