Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Pest Detection in Olive Groves Using YOLOv7 and YOLOv8 Models
    Publication . Alves, Adília; Pereira, J.A.; Khanal, Salik; Morais, A. Jorge; Filipe, Vitor
    Modern agriculture faces important challenges for feeding a fast-growing planet’s population in a sustainable way. One of the most important challenges faced by agriculture is the increasing destruction caused by pests to important crops. It is very important to control and manage pests in order to reduce the losses they cause. However, pest detection and monitoring are very resources consuming tasks. The recent development of computer vision-based technology has made it possible to automatize pest detection efficiently. In Mediterranean olive groves, the olive fly (Bactrocera oleae Rossi) is considered the key-pest of the crop. This paper presents olive fly detection using the lightweight YOLO-based model for versions 7 and 8, respectively, YOLOv7-tiny and YOLOv8n. The proposed object detection models were trained, validated, and tested using two different image datasets collected in various locations of Portugal and Greece. The images are constituted by sticky yellow trap photos and by McPhail trap photos with olive fly exemplars. The performance of the models was evaluated using precision, recall, and mAP.95. The YOLOV7-tiny model best performance is 88.3% of precision, 85% of Recall, 90% of mAP.50, and 53% of mAP.95. The YOLOV8n model best performance is 85% of precision, 85% of Recall, 90% mAP.50, and 55% of mAP.50 YOLO8n model achieved worst results than YOLOv7-tiny for a dataset without negative images (images without olive fly exemplars). Aiming at installing an experimental prototype in the olive grove, the YOLOv8n model was implemented in a Ubuntu Server 23.04 Raspberry PI 3 microcomputer.
  • Intelligent monitoring and management platform for the prevention of olive pests and diseases, including IoT with sensing, georeferencing and image acquisition capabilities through computer vision
    Publication . Alves, Adília; Morais, A. Jorge; Filipe, Vitor; Pereira, J.A.
    Climate change affects global temperature and precipitation patterns. These effects, in turn, influence the intensity and, in some cases, the frequency of extreme environmental events, such as forest fires, hurricanes, heat waves, floods, droughts, and storms. In general, these events can be particularly conducive to the appearance of plant pests and diseases. The availability of models and a data collection system is crucial to manage pests and diseases in sustainable agricul-tural ecosystems. Agricultural ecosystems are known to be complex, multivariable, and unpredict-able. It is important to anticipate crop pests and diseases in order to improve its control in a more ecological and economical way (e.g., precision in the use of pesticides). The development of an intel-ligent monitoring and management platform for the prevention of pests and diseases in olive groves at Trás-os- Montes region will be very beneficial. This platform must: a) integrate data from multi-ple data sources such as sensory data (e.g., temperature), biological observations (e.g., insect counts), georeferenced data (e.g., altitude) or digital images (e.g., plant images); b) systematize these data into a regional repository; c) provide relevant forecasts for pest and diseases. Convolutional Neural Networks (CNNs) can be a valuable tool for the identification and classi-fication of images acquired by Internet of Things (IoT).