Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 5 of 5
  • A data logger for educational purposes of a laboratory chemical reactor: an IoT approach
    Publication . Lima, José; Brito, Thadeu; Ferreira, Olga; Afonso, Maria João A.P.S.; Pinto, Vítor H.; Carvalho, José Augusto; Costa, Paulo Gomes da
    This paper presents the development of an acquisition system and data logger from an existing set of three continuous stirred-tank reactors in series. The reactors are currently used in chemical engineering educational laboratories to perform kinetic and tracer experiments. In this sense, to accomplish the store data process, the volumetric flow rate and the concentration of tracer, reactants and/or products of the reaction must be acquired as a function of time. In the original experimental setup, only the signal conditioning system was operational, while the acquisition, visualization, and control systems were obsolete and damaged. Thus, a new system composed of an interface and real-time acquisition data is proposed alongside preserving the main reactor structure. A graphical user interface and the automation of the various actuators were developed based on worldwide usage and low cost, respectively. This system, based on a common 8-bit microcontroller and an application developed in Lazarus, allows the storage of the acquired data in a timeseries database. In this way, students can analyze the results later or in real time. Moreover, remote access allows controlling the reactor and getting data by the Internet of Things (IoT) resources. Additionally, the proposed system using IoT allows data to be shared with the community as a dataset.
  • Real cockpit proposal for flight simulation with airbus A32x models: an overview description
    Publication . Carvalho, José Augusto; Mendes, Andre C.; Brito, Thadeu; Lima, José
    This paper describes the several steps to build an elaborate flight simulator cockpit, where the hardware is designed based on Mechatronic principles and the proposed software was developed using agile methodologies to create a Cyber-Physical System (CPS). Furthermore, this research attempts to simulate the real environment from an aircraft as close as possible with a real scale developed cockpit. Based on this, the presented paper contributions include: (1) The implementation of a complex dynamic system such as a CPS, where the Mechatronic system is part of it; (2) The deployment of a scale model of an Airbus A32x aircraft (one of the most used), integrating into a mathematical model adapted to the operation of an aircraft flight simulation system, regarding the physical forces involved. This project is also used to captivate the students’ motivation to the areas of technology such as electronics and programming and permits its development as a student project and thesis. Results allow validating the proposed cockpit.
  • Real airplane cockpit development applied to engineering education: a project based learning approach
    Publication . Carvalho, José Augusto; Mendes, Andre C.; Brito, Thadeu; Lima, José
    Engineering education, the process of teaching knowledge and principles to the professional practice of engineering, can be done by resorting to several methodologies. Project Based Learning is a teaching method that allows students to get knowledge and skills by developing and solving complex problems or challenges, supported by a supervisor. In the presented work, a real airplane cockpit development is used as a case study for Mechanical, Mechatronics, Electrical, and Computer Science courses. Students are encouraged to develop modules to be applied in the cockpit and further integrated with other ones.
  • Image Transfer over MQTT in IoT: Message Segmentation and Encryption for Remote Indicator Panels
    Publication . Valente, David; Brito, Thadeu; Correia, Márcio; Carvalho, José Augusto; Lima, José
    The Internet of Things (IoT) has revolutionized how objects and devices interact, creating new possibilities for seamless connectivity and data exchange. This paper presents a unique and effective method for transferring images via the Message Queuing Telemetry Transport (MQTT) protocol in an encrypted manner. The image is split into multiple messages, with each carrying a segment of the image, and employ top-notch encryption techniques to ensure secure communication. Applying this process, the message payload is split into smaller segments, and consequently, it minimizes the network bandwidth impact while mitigating potential of packet loss or latency issues. Furthermore, by applying encryption techniques, we guarantee the confidentiality and integrity of the image data during transmission, safeguarding against unauthorized access or tampering. Our experiments in a real-world scenario involving remote indicator panels with LEDs verify the effectiveness of our approach. By using our proposed method, we successfully transmit images over MQTT, achieving secure and reliable data transfer while ensuring the integrity of the image content. Our results demonstrate the feasibility and effectiveness of the proposed approach for image transfer in IoT applications. The combination of message segmentation, MQTT protocol, and encryption techniques offers a practical solution for transmitting images in resource-constrained IoT networks while maintaining data security. This approach can be applied in different applications.
  • Towards distance teaching: a remote laboratory approach for modbus and IoT experiencing
    Publication . Carvalho, José Augusto; Mendes, Andre C.; Brito, Thadeu; Lima, José
    Remote laboratories are of extraordinary importance for students that cannot attend classroom lessons. Once Automation and industrial networks are topics of electrical engineering that should be studied and experimented with by students in a practical way, this paper presents a developed tool that students can use to access the laboratory equipment from outside. It has as an advantage the capacity of handling several students simultaneously, and it is accessible 24 h per day and 7 days per week. The proposed tool also allows students in the classroom to interact with the system. With this proposed tool, connections between Programmable Logic Controllers (PLC) with supervision and control of high-level systems such as LabVIEW IDE are possible to program and test. The hardware implementation in the laboratory can be accessed by students to control illumination, heating and window shutter, and sensors to acquire wind speed, temperature, humidity, and CO2, as examples.