Percorrer por autor "Santos, Murillo F. dos"
A mostrar 1 - 7 de 7
Resultados por página
Opções de ordenação
- An Over-Actuated Hexacopter Tilt-Rotor UAV Prototype for Agriculture of Precision: Modeling and ControlPublication . Pimentel, Gabriel Oliveira; Santos, Murillo F. dos; Lima, José; Mercorelli, Paolo; Fernandes, Fernanda MaraThis paper focuses on the modeling, control, and simulation of an over-actuated hexacopter tilt-rotor (HTR). This configuration implies that two of the six actuators are independently tilted using servomotors, which provide high maneuverability and reliability. This approach is predicted to maintain zero pitch throughout the trajectory and is expected to improve the aircraft’s steering accuracy. This arrangement is particularly beneficial for precision agriculture (PA) applications where accurate monitoring and management of crops are critical. The enhanced maneuverability allows for precise navigation in complex vineyard environments, enabling the unmanned aerial vehicle (UAV) to perform tasks such as aerial imaging and crop health monitoring. The employed control architecture consists of cascaded proportional (P)-proportional, integral and derivative (PID) controllers using the successive loop closure (SLC) method on the five controlled degrees of freedom (DoFs). Simulated results using Gazebo demonstrate that the HTR achieves stability and maneuverability throughout the flight path, significantly improving precision agriculture practices. Furthermore, a comparison of the HTR with a traditional hexacopter validates the proposed approach.
- Cascade MIMO P-PID controllers applied in an over-actuated quadrotor Tilt-RotorPublication . Santos, Murillo F. dos; Honório, Leonardo de Mello; Silva, Mathaus F. da; Silva, William Rodrigues; Lima, José; Mercorelli, Paolo; Carmo, Marlon José doTo map the Virtual Control Actions (VCAs) into Real Control Actions (RCAs), over-actuated systems typically require nonlinear control allocation methods. On embedded robotic platforms, computational efforts are not always available. With this in mind, this work presents the design of a Quadrotor Tilt-Rotor (QTR) through a new concept of control allocation with uncoupled RCAs, where a nonlinear system is divided into partially dependent and linear subsystems with fast and robust convergence. The RCAs are divided into smaller and linearized sets and solved sequentially. Then, the cascade Multipe-Input-Multipe-Output (MIMO) Proportional (P)- Proportional, Integral and Derivative (PID) controllers tuning were presented with saturation constants and successive loop closure technique, where some open-field environment tests were conducted to validate the respective tuning. In the end, it showed to be reliable, robust, efficient, and applicable when VCAs are overlapped between the subsystems.
- Cascade PID Controllers Applied on Level and Flow Systems in a SMAR Didactic PlantPublication . Bem, Richard Rosatti de; Santos, Murillo F. dos; Mercorelli, Paolo; Martins, Felipe Nascimento; Santos Neto, Accacio Ferreira dos; Lima, JoséThe practical application of knowledge acquired during undergraduate studies is crucial for students to address real-world problems and seek solutions. The SMAR PD3 didactic plant provides a conducive environment for experiments in systems such as level and flow, common in various industrial sectors. Cascade control, an approach that sequentially uses two or more controllers, stands out as a promising strategy to enhance precision and stability in industrial processes. This work proposes a study on cascade control in flow and level systems, demonstrating its application in the didactic plant. The process involved system identification, tuning of conventional and cascade PI and PID controllers, followed by the implementation of the Successive Loop Closure technique. Results, in line with specialized literature, indicate that the implementation of cascade controllers in the industry can improve specific processes affected by disturbances or changes in variables, directly impacting the overall functioning of the process.
- Development of a Low-Cost 3D Mapping Technology with 2D LIDAR for Path Planning Based on the A* AlgorithmPublication . Ferreira, Edilson Santos; Grilo, Vinicius F.S.B.; Braun, João; Santos, Murillo F. dos; Pereira, Ana I.; Costa, Paulo Gomes da; Lima, JoséThis article presents the development of a low-cost 3D mapping technology for trajectory planning using a 2D LiDAR and a stepper motor. The research covers the design and implementation of a circuit board to connect and control all components, including the LiDAR and motor. In addition, a 3D printed support structure was developed to connect the LiDAR to the motor shaft. System data acquisition and processing are addressed, as well as the generation of the point cloud and the application of the A* algorithm for trajectory planning. Experimental results demonstrate the effectiveness and feasibility of the proposed technology for low-cost 3D mapping and trajectory planning applications.
- Development of surplus power generation forecast for use by residential loadsPublication . Dias, Paloma Greiciana de Souza; Brito, Thadeu; Silva, William R.; Pereira, Ana I.; Lopes, Luis C.G.; Santos, Murillo F. dos; Costa, Paulo Gomes da; Lima, JoséEnergy consumption has been increasing in the last years and thus, energy efficiency is one of the most important topics actually. Besides, the consumption and energy generation forecast help in efficiency optimization. This paper presents the development of a system for forecasting surplus power generation to be used by residential loads connected to smart plugs. In this way, it is intended to collaborate with the use of surplus energy production in electrical devices in a residence instead of sending to batteries or to the grid. This work presents the theoretical basis of the project and the architecture of the developed system. A Machine Learning method applied to photovoltaic generation data in a residence was used to predict surplus energy.
- Development of surplus power generation forecast for use by residential loadsPublication . Dias, Paloma Greiciana de Souza; Brito, Thadeu; Silva, William Rodrigues; Pereira, Ana I.; Lopes, Luis C.G.; Santos, Murillo F. dos; Costa, Paulo Gomes da; Lima, JoséEnergy consumption has been increasing in the last years and thus, energy efficiency is one of the most important topics actually. Besides, the consumption and energy generation forecast help in efficiency optimization. This paper presents the development of a system for forecasting surplus power generation to be used by residential loads connected to smart plugs. In this way, it is intended to collaborate with the use of surplus energy production in electrical devices in a residence instead of sending to batteries or to the grid. This work presents the theoretical basis of the project and the architecture of the developed system. A Machine Learning method applied to photovoltaic generation data in a residence was used to predict surplus energy.
- Robot at factory 4.0: an auto-referee proposal based on artificial visionPublication . Ferreira, Tony; Braun, João; Lima, José; Pinto, Vítor H.; Santos, Murillo F. dos; Costa, Paulo Gomes daThe robotization and automation of tasks are relevant processes and of great relevance to be considered nowadays. This work aims to turn the manual action of assigning the score for the robotic competition Robot at Factory 4.0 by an automatic referee. Specifically, the aim is to represent the real space in a set of computational information using computer vision, localization and mapping techniques. One of the crucial processes to achieve this goal involved the adaptive calibration of the parameters of a digital camera through visual references and tracking of objects, which resulted in a fully functional, robust and dynamic system that is capable of mapping the competition’s objects accurately and correctly performing the referee’s tasks.
