Browsing by Author "Pinto, Carlos A."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Conventional and emergent technologies for honey processing: A perspective on microbiological safety, bioactivity, and qualityPublication . Scepankova, Hana; Pinto, Carlos A.; Paula, Vanessa B.; Estevinho, Leticia M.; Saraiva, Jorge A.Honey is a natural food of worldwide economic importance. Over the last decades, its potential for food, medical, cosmetical, and biotechnological applications has been widely explored. One of the major safety issues regarding such applications is its susceptibility to being contaminated with bacterial and fungi spores, including pathogenic ones, which may impose a hurdle to its consumption in a raw state. Another factor that makes this product particularly challenging relies on its high sugar content, which will lead to the formation of hydroxymethylfurfural (HMF) when heated (due to Maillard reactions). Moreover, honey’s bioactivity is known to be affected when it goes through thermal processing due to its unstable and thermolabile components. Therefore, proper food processing methodologies are of utmost importance not only to ensure honey safety but also to provide a high-quality product with low content of HMF and preserved biological properties. As so, emerging food processing technologies have been employed to improve the safety and quality of raw honey, allowing, for example, to reduce/avoid the exposure time to high processing temperatures, with consequent impact on the formation of HMF. This review aims to gather the literature available regarding the use of conventional and emergent food processing technologies (both thermal and nonthermal food processing technologies) for honey decontamination, preservation/enhancement of honey biological activity, as well as the sensorial attributes.
- High hydrostatic pressure in the modulation of enzymatic and organocatalysis and life under pressure: a reviewPublication . Scepankova, Hana; Galante, Diogo; Espinoza-Suarez, Edelman; Pinto, Carlos A.; Estevinho, Leticia M.; Saraiva, Jorge A.The interest in high hydrostatic pressure (HHP) is mostly focused on the inactivation of deleterious enzymes, considering the quality-related issues associated with enzymes in foods. However, more recently, HHP has been increasingly studied for several biotechnological applications, including the possibility of carrying out enzyme-catalyzed reactions under high pressure. This review aims to comprehensively present and discuss the effects of HHP on the kinetic catalytic action of enzymes and the equilibrium of the reaction when enzymatic reactions take place under pressure. Each enzyme can respond differently to high pressure, mainly depending on the pressure range and temperature applied. In some cases, the enzymatic reaction remains significantly active at high pressure and temperature, while at ambient pressure it is already inactivated or possesses minor activity. Furthermore, the effect of temperature and pressure on the enzymatic activity indicated a faster decrease in activity when elevated pressure is applied. For most cases, the product concentration at equilibrium under pressure increased; however, in some cases, hydrolysis was preferred over synthesis when pressure increased. The compiled evidence of the effect of high pressure on enzymatic activity indicates that pressure is an effective reaction parameter and that its application for enzyme catalysis is promising.
- High-pressure-based strategies for the inactivation of bacillus subtilis endospores in honeyPublication . Scepankova, Hana; Pinto, Carlos A.; Estevinho, Leticia M.; Saraiva, Jorge A.Honey is a value-added product rich in several types of phenolic compounds, enzymes, and sugars recently explored in biomedical and food applications. Nevertheless, even though it has a low water activity (aW = 0.65) that hinders the development of pathogenic and spoilage microorganisms, it is still prone to contamination by pathogenic microorganisms (vegetative and spores) and may constitute harm to special groups, particularly by immunosuppressed people and pregnant women. Thus, an efficient processing methodology needs to be followed to ensure microbial safety while avoiding 5-hydroxymethylfurfural (HMF) formation and browning reactions, with a consequent loss of biological value. In this paper, both thermal (pressure-assisted thermal processing, PATP) and nonthermal high-pressure processing (HPP), and another pressure-based methodology (hyperbaric storage, HS) were used to ascertain their potential to inactivate Bacillus subtilis endospores in honey and to study the influence of aW on the inactivation on this endospore. The results showed that PATP at 600 MPa/15 min/75 C of diluted honey (52.9 Brix) with increased aW (0.85 compared to 0.55, the usual honey aW) allowed for inactivating of at least 4.0 log units of B. subtilis spores (to below detection limits), while HS and HPP caused neither the germination nor inactivated spores (i.e., there was neither a loss of endospore resistance after heat shock nor endospore inactivation as a consequence of the storage methodology). PATP of undiluted honey even at harsh processing conditions (600 MPa/15 min/85 C) did not impact the spore load. The results for diluted honey open the possibility of its decontamination by spores’ inactivation for medical and pharmaceutical applications.
- Modulation of lipid profile and lipoprotein subfractions in overweight/obese women at risk of cardiovascular diseases through the consumption of apple/berry juicePublication . Habanova, Marta; Holovicova, Maria; Scepankova, Hana; Lorkova, Marta; Gazo, Joaquin; Gazarova, Martina; Pinto, Carlos A.; Saraiva, Jorge A.; Estevinho, Leticia M.Polyphenol-rich foods protect the cellular systems of the human body from oxidative damage, thereby reducing the risk of chronic diseases such as cardiovascular disease (CVD). We investigated the effect of phenolic-rich apple/berry juice (chokeberry, blueberry, and cranberry) on lipidemic profiles in overweight/obese women. The 6 week single-arm pre–post intervention study involved 20 women (mean age 52.95 ± 5.8 years, body mass index ≥25 kg/m2, and ≥1 CVD risk factors) consuming 300 mL/day of the apple/berry juice. Lipid profile, low-density lipoprotein (LDL) subfractions assessed using Lipoprint® electrophoresis, and other parameters related to cardiovascular risk (C-reactive protein, glucose, blood pressure) were analyzed before and again after the intervention in the monitored group of women. High-density lipoprotein cholesterol (HDL-C) increased from 1.30 ± 0.29 to 1.55 ± 0.32, magnesium from 0.85 ± 0.03 to 0.90 ± 0.05, and total antioxidant status from 1.68 ± 0.08 to 1.81 ± 0.10. The LDL/HDL ratio significantly decreased from 3.40 ± 0.99 to 2.66 ± 0.63 mmol/L, and the glucose from 5.50 ± 0.72 to 5.24 ± 0.74 mmol/L. However, the hs-CRP did not change significantly. Women with atherogenic subfractions LDL3-7 at baseline (n = 6) showed a significant reduction from 0.45 ± 0.19 to 0.09 ± 0.07 mmol/L. Overweight/obese women may benefit from apple/berry juice as part of a healthy lifestyle to improve their lipid profile, and thus, contribute to cardiovascular health.
- Novel cold and thermally pasteurized cardoon-enriched functional smoothie formulations: a zero-waste manufacturing approachPublication . Mandim, Filipa; Petropoulos, Spyridon Α.; Pinto, Carlos A.; Heleno, Sandrina A.; Rodrigues, Paula; Dias, Maria Inês; Saraiva, Jorge A.; Santos-Buelga, Celestino; Ferreira, Isabel C.F.R.; Barros, Lillian; Pinela, JoséThis study investigated the potential of incorporating cardoon ( Cynara cardunculus L.) blades as bioactive and dietary fiber ingredients in vegetable/fruit-based smoothies, within a zero-waste approach. The smoothie formulations were pasteurized by high-pressure (550 MPa for 3 min, HPP) and thermal (90 degrees C for 30 s, TP) treatments and stored at 4 degrees C for 50 days. Cardoon-fortified smoothies exhibited higher viscosity, darker color, increased phenolic compound levels, and greater anti-inflammatory and antioxidant activities. Furthermore, the cardoon blade ingredients contributed to a more stable dietary fiber content throughout the smoothies ' shelf-life. HPP-processed smoothies did not contain sucrose, suggesting enzymatic activity that resulted in sucrose hydrolysis. All beverage formulations had low or no microbial growth within European limits. In conclusion, the fortification of smoothies with cardoon blades enhanced bioactive properties and quality attributes during their shelf-life, highlighting the potential of this plant material as a potential functional food ingredient in a circular economy context.
- Quantifying the Impact of High‐Pressure Processing on the Phenolic Profile, Antioxidant Activity, and Pollen Morphology in HoneyPublication . Scepankova, Hana; Majtan, Juraj; Pospiech, Matej; Moreira, Manuela M.; Pinto, Carlos A.; Dias, Luís G.; Estevinho, Letícia M.; Delerue‐Matos, Cristina; Saraiva, Jorge A.Honey can benefit from non‐thermal processing techniques such as high‐pressure processing (HPP) to improve its quality and bioactivity. This study investigated the impact of HPP (600 MPa for 5, 10, and 15 min) on honey's quality, including the levels of hydroxymethylfurfural (HMF), antioxidant activity, total phenolic content (TPC), and phenolic profile. HPP treatment did not significantly affect HMF or TPC levels but led to selective changes in the phenolic profile. Despite a reduction in certain phenolic compound content, HPP for 5 and 15 min caused a significant increase in the antioxidant activity (2,2‐diphenyl‐1‐picrylhydrazyl [DPPH]) of honey from the mean value of 41.8% to values of 45.4% and 49.6%, respectively. On the other hand, HPP for 10 min did not change the antioxidant activity of tested honey. A 27.5% reduction in the equatorial diameter of pollen grains was observed after HPP combined with temperature at 75°C, suggesting an improved release of bioactive compounds. The content of specific phenolic compounds, including caffeic acid, p‐coumaric acid, sinapic acid, naringin, kaempferol, and the TPC, significantly affected the DPPH activity. The increment in the antioxidant activity of HPP honey may be attributed to selective changes in the content of certain phenolic compounds and improved their extraction from pollen grains.