Browsing by Author "Filipi, Janja"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- An unprecedented large-scale survey of honey bee mitochondrial diversity in Europe: c-lineage dominance and the need for conservation effortsPublication . Li, Fernanda; Costa, Maíra; Lopes, Ana Rita; Gonçalves, Telma; Henriques, Dora; Quaresma, Andreia; Yadró Garcia, Carlos A.; Albo, Alexandre; Blažytė-Čereškienė, Laima; Brodschneider, Robert; Brusbardis, Valters; Carreck, Norman L.; Charistos, Leonidas; Chlebo, Robert; Coffey, Mary F.; Dahle, Bjørn; Danneels, Ellen; Dobrescu, Constantin; Dupleix-Marchal, Anna; Filipi, Janja; Gajda, Anna; Gratzer, Kristina; Groeneveld, Linn Fenna; Hatjina, Fani; Johannesen, Jes; Kolasa, Michal; Körmendy-Rácz, János; Kovačić, Marin; Kristiansen, Preben; Martikkala, Maritta; McCormack, Grace P.; Martín-Hernández, Raquel; Pavlov, Borce; Pietropaoli, Marco; Poirot, Benjamin; Radev, Zheko; Raudmets, Aivar; René-Douarre, Vincent; Roessink, Ivo; Škerl, Maja Ivana Smodiš; Soland-Reckeweg, Gabriele; Titera, Dalibor; Steen, Jozef van der; Varnava, Andri; Vejsnæs, Flemming; Webster, Matthew T.; Fedoriak, Mariia M.; Zarochentseva, Oksana; Graaf, Dirk C.; Pinto, M. AliceEurope is home to ten Apis mellifera subspecies, which belong to three mitochondrial lineages: the Western European (M), Eastern European (C), and African (A). However, the long-standing human-mediated movement of queens, primarily of C-lineage ancestry, has threatened the genetic integrity of many of these native subspecies through introgression and replacement. This has led to the establishment of conservation programs to recover the native lines in some European countries. The maternally-inherited mitochondrial DNA (mtDNA), particularly the highly polymorphic intergenic region tRNAleu-cox2, has been the marker of choice for assessing honey bee variation and introgression at large geographical scales. Herein, we will show the results of the tRNAleu-cox2 variation obtained from over 1200 colonies sampled across the range of the ten subspecies and covering 33 European countries. These revealed that apart from a few countries (Portugal, Spain, and Ireland) and isolated protected populations, European populations are predominantly dominated by C-lineage haplotypes, and many native subspecies exhibit a signature of C-derived introgression. In conclusion, this unprecedented survey of honey bee diversity across Europe underscores the concerning dominance of C-lineage genetic variation, highlighting the urgent need for strategic conservation efforts to preserve the native genetic diversity of Apis mellifera.
- Authoritative subspecies diagnosis tool for European honey bees based on ancestry informative SNPsPublication . Momeni, Jamal; Parejo, Melanie; Nielsen, Rasmus O.; Langa, Jorge; Montes, Iratxe; Papoutsis, Laetitia; Farajzadeh, Leila; Bendixen, Christian; Căuia, Eliza; Charrière, Jean Daniel; Coffey, Mary F.; Costa, Cecilia; Dall'Olio, Raffaele; De la Rúa, Pilar; Dražić, Marica Maja; Filipi, Janja; Galea, Thomas; Golubovski, Miroljub; Gregorc, Aleš; Grigoryan, Karina; Hatjina, Fani; Ilyasov, Rustem; Ivanova, Evgeniya Neshova; Janashia, Irakli; Kandemir, Irfan; Karatasou, Aikaterini; Kekecoglu, Meral; Kezic, Nikola; Matray, Enikö Sz; Mifsud, David; Moosbeckhofer, Rudolf; Nikolenko, Alexei G.; Papachristoforou, Alexandros; Petrov, Plamen; Pinto, M. Alice; Poskryakov, Aleksandr V.; Sharipov, Aglyam Y.; Siceanu, Adrian; Soysal, M. Ihsan; Uzunov, Aleksandar; Zammit Mangion, Marion; Vingborg, Rikke; Bouga, Maria; Kryger, Per; Meixner, Marina D.; Estonba, AndoneWith numerous endemic subspecies representing four of its five evolutionary lineages, Europe holds a large fraction of Apis mellifera genetic diversity. This diversity and the natural distribution range have been altered by anthropogenic factors. The conservation of this natural heritage relies on the availability of accurate tools for subspecies diagnosis. Based on pool-sequence data from 2145 worker bees representing 22 populations sampled across Europe, we employed two highly discriminative approaches (PCA and FST) to select the most informative SNPs for ancestry inference. Results: Using a supervised machine learning (ML) approach and a set of 3896 genotyped individuals, we could show that the 4094 selected single nucleotide polymorphisms (SNPs) provide an accurate prediction of ancestry inference in European honey bees. The best ML model was Linear Support Vector Classifier (Linear SVC) which correctly assigned most individuals to one of the 14 subspecies or different genetic origins with a mean accuracy of 96.2% ± 0.8 SD. A total of 3.8% of test individuals were misclassified, most probably due to limited differentiation between the subspecies caused by close geographical proximity, or human interference of genetic integrity of reference subspecies, or a combination thereof. Conclusions: The diagnostic tool presented here will contribute to a sustainable conservation and support breeding activities in order to preserve the genetic heritage of European honey bees.
- Large Scale Mitochondrial Evidence of C-lineage Dominance in European Honey BeesPublication . Li, Fernanda; Lopes, Ana; Costa, Maíra; Henriques, Dora; Quaresma, Andreia; Yadró García, Carlos A.; Albo, Alexandre; Čereškienė, Laima Blažytė; Brodschneider, Robert; Brusbardis, Valters; Carreck, Norman L.; Charistos, Leonidas; Chlebo, Robert; Coffey, Mary F.; Dahle, Bjørn; Danneels, Ellen; Dobrescu, Constantin; Dupleix-Marchal, Anna; Filipi, Janja; Gajda, Anna; Gratzer, Kristina; Groeneveld, Linn Fenna; Hatjina, Fani; Johannesen, Jes; Kolasa, Michal; Körmendy-Rácz, János; Kovačić, Marin; Kristiansen, Preben; Martikkala, Maritta; McCormack, Grace P.; Martín-Hernández, Raquel; Pavlov, Borce; Poirot, Benjamin; Pietropaoli, Marco; Radev, Zheko; Raudmets, Aivar; René-Douarre, Vincent; Roessink, Ivo; Škerl, Maja Ivana Smodiš; Soland, Gabriele; Titera, Dalibor; Steen, Jozef van der; Varnava, Andri; Vejsnæs, Flemming; Fedoriak, Mariia M.; Zarochentseva, Oksana; Webster, Matthew T.; Graaf, Dirk C.; Pinto, M. AliceIn Europe, distribution of the several endemic honey bee (Apis mellifera) subspecies has suffered a considerable shift in the last century. In particular, beekeepers tend to favour subspecies of Eastern European ancestry (C-lineage), such as the Italian honey bee (A. m. ligustica), due to their perceived docility and high honey production. As a result, large scale migratory beekeeping and trade of C-lineage queens have exposed the native European honey bees to introgression and replacement, jeopardizing their genetic integrity and locally adapted traits. The maternally-inherited and highly polymorphic mitochondrial intergenic region tRNAleu-cox2 is routinely used for the assessment of honey bee diversity and introgression at large geographical scales. In this study, we conducted a survey on tRNAleu-cox2 variation in more than 1300 colonies from 33 European countries to assess current status of mitochondrial diversity patterns in Europe. Total genomic DNA was extracted from the bee thorax followed by PCR amplification of the tRNAleu-cox2 region and sequencing. The haplotypes were identified using alignments in MEGA 11. A clear dominance of C-lineage haplotypes was found (65%). The most prevalent C-lineage haplotype was C2 (54%) followed by C3 (23%) and C1(22%). Contrary to this trend, in Portugal, Spain and Ireland, less than 10% of the colonies exhibit the C-haplotype. Furthermore, the analysed apiaries in isolated protected areas (n=7) revealed a high proportion of colonies of western European (M-lineage) ancestry (80%) with M4 as the most frequent haplotype. African haplotypes (A lineage) were also found, albeit at lower frequencies, and were mainly concentrated in the Iberian Peninsula (9%). Intensive queen breeding and migratory beekeeping is homogenizing the gene pool of European bee populations. This survey of honey bee maternal diversity across Europe highlights the alarming dominance of C-lineage haplotypes and underscores the importance of conservation apiaries, as they have effectively preserved the autochthonous M-lineage subspecies in different countries. This work was conducted in the framework of the project Better-B, funded by the European Union, the Swiss State Secretariat for Education, Research, and Innovation, and UK Research and Innovation under the UK government's Horizon Europe funding guarantee (grant number 10068544).
- Maternal origin of honeybee (Apis mellifera) colonies from across EuropePublication . Lopes, Ana; Costa, Maíra; Tounakti, Sahar; Henriques, Dora; Quaresma, Andreia; Yadró Garcia, Carlos A.; Albo, Alexandre; Blažytė-Čereškienė, Laima; Broodschneider, Robert; Brusbardis, Valters; Carreck, Norman L.; Charistos, Leonidas; Chlebo, Robert; Coffey, Mary F.; Danneels, Ellen; Dobrescu, Constantin; Filipi, Janja; Gajda, Anna; Galea, Thomas; Gratzer, Kristina; Hatjina, Fani; Johannesen, Jes; Körmendy-Rácz, János; Kovačić, Marin; Preben, Kristiansen; Martikkala, Maritta; Martín-Hernández, Raquel; Pietropaoli, Marco; Poirot, Benjamin; Radev, Zheko; Raudmets, Aivar; Douarre, Vincent; Rodriguez-Flores, Maria Shantal; Roessink, Ivo; Ivana, Maja; Škerl, Maja Ivana Smodiš; Titera, Dalibor; Steen, Jozef van der; Varnava, Andri; Vejsnæs, Flemming; Webster, Matthew T.; Graaf, Dirk C.; Pinto, M. AliceWorldwide commercial beekeeping poses a threat to the native origin of the honeybee (Apis mellifera), with beekeepers favouring subspecies of Eastern European C-lineage ancestry, due to their docile behaviour and high honey production traits. In many parts of western and northern Europe, queens of Western European M-lineage ancestry have been massively replaced by queens of C-lineage ancestry, and this has led to the development of conservation programs aiming at recovering native lines. The maternally-inherited mitochondrial DNA (mtDNA), particularly the intergenic region tRNAleu-cox2, has been the marker of choice for assessing honey bee variation at large geographical scales. Herein, we will show the results of the mtDNA analysis of over 850 colonies collected across 28 European countries. These samples were subjected to DNA extraction, followed by PCR, and Sanger sequencing. The analysis of the sequences was conducted in Mega 11. The results indicated that, apart from Portugal, Spain, and the conservation centres in France and Denmark, where the colonies exhibited African or M haplotypes, the remaining countries are dominated by colonies of C-lineage maternal ancestry. In conclusion, this unprecedented mtDNA analysis conducted across Europe underscores the worrying dominance of C-lineage genetic variation, highlighting the urgent need for strategic conservation efforts to preserve the native genetic diversity of Apis mellifera.
- Virus prevalence in egg samples collected from naturally selected and traditionally managed honey bee colonies across europePublication . Bouuaert, David Claeys; De Smet, Lina; Brunain, Marleen; Dahle, Bjørn; Blacquiere, Tjeerd; Dalmon, Anne; Dezmirean, Daniel; Elen, Dylan; Filipi, Janja; Giurgiu, Alexandru; Gregorc, Aleš; Kefuss, John; Locke, Barbara; Miranda, Joachim; Oddie, Melissa; Panziera, Delphine; Parejo, Melanie; Pinto, Maria Alice; Graaf, Dirk C.Monitoring virus infections can be an important selection tool in honey bee breeding. A recent study pointed towards an association between the virus-free status of eggs and an increased virus resistance to deformed wing virus (DWV) at the colony level. In this study, eggs from both naturally surviving and traditionally managed colonies from across Europe were screened for the prevalence of different viruses. Screenings were performed using the phenotyping protocol of the ‘suppressed in ovo virus infection’ trait but with qPCR instead of end-point PCR and a primer set that covers all DWV genotypes. Of the 213 screened samples, 109 were infected with DWV, 54 were infected with black queen cell virus (BQCV), 3 were infected with the sacbrood virus, and 2 were infected with the acute bee paralyses virus. It was demonstrated that incidences of the vertical transmission of DWV were more frequent in naturally surviving than in traditionally managed colonies, although the virus loads in the eggs remained the same. When comparing virus infections with queen age, older queens showed significantly lower infection loads of DWV in both traditionally managed and naturally surviving colonies, as well as reduced DWV infection frequencies in traditionally managed colonies. We determined that the detection frequencies of DWV and BQCV in honey bee eggs were lower in samples obtained in the spring than in those collected in the summer, indicating that vertical transmission may be lower in spring. Together, these patterns in vertical transmission show that honey bee queens have the potential to reduce the degree of vertical transmission over time.
- Wing geometric morphometrics of european honey bee populationsPublication . Costa, Maíra; Gonçalves, Telma; Lopes, Ana; Vitrio, Nathalia; Albo, Alexandre; Blažytė-Čereškienė, Laima; Brodschneider, Robert; Brusbardis, Valters; Carreck, Norman L.; Charistos, Leonidas; Chlebo, Robert; Coffey, Mary F.; Danneels, Ellen; Graaf, Dirk C.; Dobrescu, Constantin; Filipi, Janja; Gajda, Anna; Gratzer, Kristina; Hatjina, Fani; Johannesen, Jes; Körmendy-Rácz, János; Kovačić, Marin; Kristiansen, Preben; Martikkala, Maritta; Martín-Hernández, Raquel; Pietropaoli, Marco; Poirot, Benjamin; Radev, Zheko; Raudmets, Aivar; Douarre, Vincent; Roessink, Ivo; Škerl, Maja Ivana Smodiš; Titera, Dalibor; Steen, Jozef van der; Varnava, Andri; Vejsnæs, Flemming; Webster, Matthew T.; Rodrigues, Pedro João; Henriques, Dora; Pinto, M. AliceWing venation patterns have long been used to identify honey bee subspecies, singly or in combination with other morphological traits, using different approaches. Beekeepers have traditionally used identification methods that only require estimations of the Cubital Index, Hantel Index, and/or Discoidal Shift Angle. However, these measures do not consider all the information carried by wing patterns, and a more accurate approach is geometric morphometrics, which requires the annotation of 19 landmarks in the forewing vein junctions. While manual wing annotation is a time-consuming and error-prone endeavour, the recently developed software DeepWings© performs this task automatically, allowing a fast and relatively accurate identification of European honey bee subspecies, and is appropriate for large-scale projects. In this study, we analyse the patterns of forewings extracted from over 850 colonies sampled across 29 European countries. To that end, the right forewings of five workers per colony are photographed with a digital camera attached to a stereomicroscope. The images are then analysed using DeepWings©. Our main objective is to assess (i) how closely the colonies identified by DeepWings© match the endemic evolutionary lineages and subspecies; and (ii) the association between the identification produced by DeepWings© and that inferred from mitochondrial DNA. While geometric morphometrics does not replace molecular tools for the identification of colonies, it can provide a preliminary estimation of their genetic integrity.
