Repository logo
 
Publication

A neural network approach in WSN real-time monitoring system to measure indoor air quality

dc.contributor.authorBrito, Thadeu
dc.contributor.authorLima, José
dc.contributor.authorBiondo, Elias Junior
dc.contributor.authorNakano, Alberto Yoshiro
dc.contributor.authorPereira, Ana I.
dc.date.accessioned2024-01-05T10:06:32Z
dc.date.available2024-01-05T10:06:32Z
dc.date.issued2023
dc.description.abstractIndoor Air Quality (IAQ) pertains to the air quality within a specific space and is directly linked to the well-being and comfort of its occupants. In line with this objective, this research presents a real-time system dedicated to monitoring and predicting IAQ, encompassing both thermal comfort and gas concentration. The system initiates with a data acquisition, wherein a set of sensors captures environmental parameters and transmits this data for storage in a database. The measured parameters are analyzed by a neural network algorithm that predicts anomalies based on historical data. The neural network model generated predictions from 75.9% to 98.1% (depending on the parameter) of precision during regular situations. After that, a test with smoke in the same place was done to validate the model, and the results showed it could detect anomalies. Finally, prediction data are stored in a new database and displayed on a dashboard for monitoring in real-time measured and prediction data.pt_PT
dc.description.sponsorshipThe authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCTIMCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LAlPI0007/2021). Thadeu Brito is supported by FCT PhD Grant Reference SFRHIBD/08598/2020.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationBrito, Thadeu; Lima, José; Biondo, Elias; Nakano, Alberto; Pereira, Ana I. (2023). A neural network approach in WSN real-time monitoring system to measure indoor air quality. In 3rd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). 27-28 September 2023, Cairo, Egypt. ISBN 979-8-3503-0623-1. p. 233-238pt_PT
dc.identifier.doi10.1109/MIUCC58832.2023.10278362pt_PT
dc.identifier.isbn979-8-3503-0623-1
dc.identifier.urihttp://hdl.handle.net/10198/29102
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.relationLA/P/0007/2021pt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectInternet of thingspt_PT
dc.subjectWireless sensor networkpt_PT
dc.subjectIndoor air qualitypt_PT
dc.subjectArtificial neural networkpt_PT
dc.titleA neural network approach in WSN real-time monitoring system to measure indoor air qualitypt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.citation.endPage238pt_PT
oaire.citation.startPage233pt_PT
oaire.citation.title3rd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC)pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameBrito
person.familyNameLima
person.familyNamePereira
person.givenNameThadeu
person.givenNameJosé
person.givenNameAna I.
person.identifierBjSISEAAAAAJ
person.identifierR-000-8GD
person.identifier.ciencia-idC911-A95D-712F
person.identifier.ciencia-id6016-C902-86A9
person.identifier.ciencia-id0716-B7C2-93E4
person.identifier.orcid0000-0002-5962-0517
person.identifier.orcid0000-0001-7902-1207
person.identifier.orcid0000-0003-3803-2043
person.identifier.ridL-3370-2014
person.identifier.ridF-3168-2010
person.identifier.scopus-author-id57200694948
person.identifier.scopus-author-id55851941311
person.identifier.scopus-author-id15071961600
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationc8641c9a-a994-4ab2-836d-c758c0e44cc9
relation.isAuthorOfPublicationd88c2b2a-efc2-48ef-b1fd-1145475e0055
relation.isAuthorOfPublicatione9981d62-2a2b-4fef-b75e-c2a14b0e7846
relation.isAuthorOfPublication.latestForDiscoveryd88c2b2a-efc2-48ef-b1fd-1145475e0055
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication.latestForDiscoveryd0a17270-80a8-4985-9644-a04c2a9f2dff

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A_Neural_Network_Approach.pdf
Size:
3.96 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: