Repository logo
 
Publication

Almond orchard management using multi-temporal UAV data: a proof of concept

dc.contributor.authorGuimaraes, Nathalie
dc.contributor.authorPadua, Luis
dc.contributor.authorSousa, Joaquim J.
dc.contributor.authorBento, Albino
dc.contributor.authorCouto, Pedro
dc.date.accessioned2023-02-16T15:49:48Z
dc.date.available2023-02-16T15:49:48Z
dc.date.issued2022
dc.description.abstractIn the last decade Unmanned Aerial Systems (UAS) have become a reference tool for agriculture applications. The integration of multispectral sensors that can capture near infrared (NIR) and red edge spectral reflectance allows the creation of vegetation indices, which are fundamental for crop monitoring process. In this study, we propose a methodology to analyze the vegetative state of almond crops using multi-temporal data acquired by a multispectral sensor accoupled to an Unmanned Aerial Vehicle (UAV). The methodology implemented allowed individual tree parameters extraction, such as number of trees, tree height, and tree crown area. This also allowed the acquisition of Normalized Difference Vegetation Index (NDVI) information for each tree. The multitemporal data showed significant variations in the vegetative state of almond crops.pt_PT
dc.description.sponsorshipThe author acknowledges the financial support provided by the FCT-Portuguese Foundation for Science and Technology (UI/BD/150727/2020), under the Doctoral Programme “Agricultural Production Chains – from fork to farm” (PD/00122/2012) and under the project UIDB/04033/2020.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationGuimaraes, Nathalie; Padua, Luis; Sousa, Joaquim J.; Bento, Albino; Couto, Pedro (2022). Almond orchard management using multi-temporal UAV data: a proof of concept. In IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022. p. 4376-4379. ISBN 978-1-6654-2792-0pt_PT
dc.identifier.doi10.1109/IGARSS46834.2022.9883370pt_PT
dc.identifier.isbn978-1-6654-2792-0
dc.identifier.urihttp://hdl.handle.net/10198/27009
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.relationAerial high-resolution imagery to assess almond orchard conditions
dc.relationCentre for the Research and Technology of Agro-Environmental and Biological Sciences
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectAlmond crops monitoringpt_PT
dc.subjectUAV multitemporal data analysispt_PT
dc.subjectTree parameters extractionpt_PT
dc.subjectVegetation indicespt_PT
dc.subjectPrecision agriculturept_PT
dc.titleAlmond orchard management using multi-temporal UAV data: a proof of conceptpt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleAerial high-resolution imagery to assess almond orchard conditions
oaire.awardTitleCentre for the Research and Technology of Agro-Environmental and Biological Sciences
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/POR_NORTE/UI%2FBD%2F150727%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04033%2F2020/PT
oaire.citation.endPage4379pt_PT
oaire.citation.startPage4376pt_PT
oaire.citation.titleIEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022pt_PT
oaire.fundingStreamPOR_NORTE
oaire.fundingStream6817 - DCRRNI ID
person.familyNameBento
person.givenNameAlbino
person.identifier.ciencia-idD516-325A-9AD7
person.identifier.orcid0000-0001-5215-785X
person.identifier.ridN-9706-2016
person.identifier.scopus-author-id35247694000
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication233115be-9d46-49d0-8b7d-2d64406d64a0
relation.isAuthorOfPublication.latestForDiscovery233115be-9d46-49d0-8b7d-2d64406d64a0
relation.isProjectOfPublication379f6576-df64-4575-94ed-ae2fa723a2a9
relation.isProjectOfPublicationac4fb709-719a-450b-8c96-17592d46f5e9
relation.isProjectOfPublication.latestForDiscovery379f6576-df64-4575-94ed-ae2fa723a2a9

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ALMOND_ORCHARD.pdf
Size:
653.95 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: