Publication
Almond orchard management using multi-temporal UAV data: a proof of concept
dc.contributor.author | Guimaraes, Nathalie | |
dc.contributor.author | Padua, Luis | |
dc.contributor.author | Sousa, Joaquim J. | |
dc.contributor.author | Bento, Albino | |
dc.contributor.author | Couto, Pedro | |
dc.date.accessioned | 2023-02-16T15:49:48Z | |
dc.date.available | 2023-02-16T15:49:48Z | |
dc.date.issued | 2022 | |
dc.description.abstract | In the last decade Unmanned Aerial Systems (UAS) have become a reference tool for agriculture applications. The integration of multispectral sensors that can capture near infrared (NIR) and red edge spectral reflectance allows the creation of vegetation indices, which are fundamental for crop monitoring process. In this study, we propose a methodology to analyze the vegetative state of almond crops using multi-temporal data acquired by a multispectral sensor accoupled to an Unmanned Aerial Vehicle (UAV). The methodology implemented allowed individual tree parameters extraction, such as number of trees, tree height, and tree crown area. This also allowed the acquisition of Normalized Difference Vegetation Index (NDVI) information for each tree. The multitemporal data showed significant variations in the vegetative state of almond crops. | pt_PT |
dc.description.sponsorship | The author acknowledges the financial support provided by the FCT-Portuguese Foundation for Science and Technology (UI/BD/150727/2020), under the Doctoral Programme “Agricultural Production Chains – from fork to farm” (PD/00122/2012) and under the project UIDB/04033/2020. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Guimaraes, Nathalie; Padua, Luis; Sousa, Joaquim J.; Bento, Albino; Couto, Pedro (2022). Almond orchard management using multi-temporal UAV data: a proof of concept. In IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022. p. 4376-4379. ISBN 978-1-6654-2792-0 | pt_PT |
dc.identifier.doi | 10.1109/IGARSS46834.2022.9883370 | pt_PT |
dc.identifier.isbn | 978-1-6654-2792-0 | |
dc.identifier.uri | http://hdl.handle.net/10198/27009 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | IEEE | pt_PT |
dc.relation | Aerial high-resolution imagery to assess almond orchard conditions | |
dc.relation | Centre for the Research and Technology of Agro-Environmental and Biological Sciences | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Almond crops monitoring | pt_PT |
dc.subject | UAV multitemporal data analysis | pt_PT |
dc.subject | Tree parameters extraction | pt_PT |
dc.subject | Vegetation indices | pt_PT |
dc.subject | Precision agriculture | pt_PT |
dc.title | Almond orchard management using multi-temporal UAV data: a proof of concept | pt_PT |
dc.type | conference paper | |
dspace.entity.type | Publication | |
oaire.awardTitle | Aerial high-resolution imagery to assess almond orchard conditions | |
oaire.awardTitle | Centre for the Research and Technology of Agro-Environmental and Biological Sciences | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/POR_NORTE/UI%2FBD%2F150727%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04033%2F2020/PT | |
oaire.citation.endPage | 4379 | pt_PT |
oaire.citation.startPage | 4376 | pt_PT |
oaire.citation.title | IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022 | pt_PT |
oaire.fundingStream | POR_NORTE | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Bento | |
person.givenName | Albino | |
person.identifier.ciencia-id | D516-325A-9AD7 | |
person.identifier.orcid | 0000-0001-5215-785X | |
person.identifier.rid | N-9706-2016 | |
person.identifier.scopus-author-id | 35247694000 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 233115be-9d46-49d0-8b7d-2d64406d64a0 | |
relation.isAuthorOfPublication.latestForDiscovery | 233115be-9d46-49d0-8b7d-2d64406d64a0 | |
relation.isProjectOfPublication | 379f6576-df64-4575-94ed-ae2fa723a2a9 | |
relation.isProjectOfPublication | ac4fb709-719a-450b-8c96-17592d46f5e9 | |
relation.isProjectOfPublication.latestForDiscovery | 379f6576-df64-4575-94ed-ae2fa723a2a9 |