| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 1.93 MB | Adobe PDF |
Abstract(s)
Este trabalho tem como objetivo desenvolver uma metodologia de seletividade cinética,
para os pseudocomponentes do petróleo em escoamento gás-liquido em colunas de bolhas
usando a Fluidodinâmica Computacional (CFD). Uma geometria cilíndrica de 2,5m de
altura e 0,162m de diâmetro foi usada tanto na validação fluidodinâmica com base em
dados experimentais da literatura, como na análise cinética do reator operando em dois
modos distintos em relação a fase líquida: batelada e contínuo. Todos os casos de estudo
operam em regime heterogêneo de escoamento, com velocidade superficial do gás igual
a 8 cm/s e diâmetro médio de bolhas de 6 mm. O modelo fluidodinâmico validado
apresentou boa concordância com os dados experimentais, sendo empregado como base
para a implementação do modelo cinético de rede de Krishna e Saxena (1989). A análise
da hidroconversão foi realizada a 371ºC, e os resultados mostraram o comportamento
esperado para o processo reativo estudado, definindo-se os tempos (batelada) e posições
axiais (contínuo) de coleta ideal para os pseudocomponentes leves. Em síntese, ressaltase
o uso da ferramenta CFD no entendimento, desenvolvimento e otimização de
processos.
The present work aims to develop a methodology for kinetic selectivity of oil pseudocomponents in gas-liquid bubbly flow using Computational Fluid Dynamics (CFD). A cylindrical geometry of 2.5m of height and 0.162m of inner diameter was employed for the fluid dynamic validation with experimental data from literature, and for the kinetic analysis, using two operating modes based on liquid phase: batch and continuous. All simulated cases were under heterogeneous turbulent flow regime, with a gas superficial velocity of 8cm/s and a mean bubble diameter of 6mm. The fluid dynamic model exhibited good agreement with experimental data, being used to implement the kinetic network from Krishna and Saxena (1989). The hydroconversion analysis was performed at 371ºC, and the results showed the expected behavior, providing a definition for the ideal time (batch process) and axial location (continuous process) to collect the light pseudo-components. Therefore, it can be highlighted the use of Computation Fluid Dynamics as a good tool to develop and optimize chemical processes.
The present work aims to develop a methodology for kinetic selectivity of oil pseudocomponents in gas-liquid bubbly flow using Computational Fluid Dynamics (CFD). A cylindrical geometry of 2.5m of height and 0.162m of inner diameter was employed for the fluid dynamic validation with experimental data from literature, and for the kinetic analysis, using two operating modes based on liquid phase: batch and continuous. All simulated cases were under heterogeneous turbulent flow regime, with a gas superficial velocity of 8cm/s and a mean bubble diameter of 6mm. The fluid dynamic model exhibited good agreement with experimental data, being used to implement the kinetic network from Krishna and Saxena (1989). The hydroconversion analysis was performed at 371ºC, and the results showed the expected behavior, providing a definition for the ideal time (batch process) and axial location (continuous process) to collect the light pseudo-components. Therefore, it can be highlighted the use of Computation Fluid Dynamics as a good tool to develop and optimize chemical processes.
