Repository logo
 
Publication

Comparing RL policies for robotic pusher

datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
datacite.subject.sdg04:Educação de Qualidade
datacite.subject.sdg09:Indústria, Inovação e Infraestruturas
dc.contributor.authorBonjour, Pedro
dc.contributor.authorLopes, Rui Pedro
dc.date.accessioned2025-12-04T15:21:41Z
dc.date.available2025-12-04T15:21:41Z
dc.date.issued2026
dc.description.abstractReinforcement learning (RL) has been consolidated as a promising approach to optimizing robotic tasks, allowing the improvement of performance and energy efficiency. This study investigates the effectiveness of five RL algorithms in the Pusher environment. Advantage Actor-Critic (A2C), Proximal Policy Optimization (PPO), Deep Deterministic Policy Gradient (DDPG), Soft Actor-Critic (SAC) and Twin Delayed Deep Deterministic Policy Gradient (TD3). We evaluated training time, computational efficiency, and reward values to identify the most balanced solution between accuracy and energy consumption. The results indicate that the PPO offers the best compromise between performance and efficiency, with reduced training time and stability in learning. SAC achieves the best rewards but requires more training time, while A2C faces difficulties in continuous spaces. DDPG and TD3, despite t he good results, have high computational consumption, which limits their viability for real-time industrial applications. These findings highlight the importance of considering energy efficiency when choosing RL algorithms for robotic applications. As a future direction, we propose the implementation of these algorithms in a real-world environment, as well as the exploration of hybrid approaches that combine different strategies to improve accuracy and minimize energy consumption.eng
dc.description.sponsorshipThis work was supported by national funds through FCT/MCTES (PIDDAC): CeDRI, UIDB/05757/2020 (DOI: 10.54499/UIDB/05757/2020) and UIDP/05757/2020 (DOI: 10.54499/UIDP/05757/2020); and SusTEC, LA/P/0007/2020 (DOI: 10.54499/LA/P/0007/2020).
dc.identifier.citationBonjour, Pedro; Lopes, Rui Pedro (2026). Comparing RL policies for robotic pusher. In 5th International Conference OL2A. Cham: Springer Nature. p. 220–230. ISBN 9783032001399
dc.identifier.doi10.1007/978-3-032-00140-5_15
dc.identifier.isbn9783032001399
dc.identifier.isbn9783032001405
dc.identifier.issn1865-0929
dc.identifier.issn1865-0937
dc.identifier.urihttp://hdl.handle.net/10198/35167
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer Nature
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
dc.relation.ispartofCommunications in Computer and Information Science
dc.relation.ispartofOptimization, Learning Algorithms and Applications
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectReinforcement learning
dc.subjectAutonomous robotics
dc.subjectPoliciesPerformance
dc.subjectAgent training
dc.titleComparing RL policies for robotic pushereng
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT
oaire.citation.endPage230
oaire.citation.startPage220
oaire.citation.title5th International Conference OL2A
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameLopes
person.givenNameRui Pedro
person.identifier.ciencia-id8E14-54E4-4DB5
person.identifier.orcid0000-0002-9170-5078
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublicatione1e64423-0ec8-46ee-be96-33205c7c98a9
relation.isAuthorOfPublication.latestForDiscoverye1e64423-0ec8-46ee-be96-33205c7c98a9
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication6255046e-bc79-4b82-8884-8b52074b4384
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Comparing RL Policies.pdf
Size:
2.98 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: