Publication
Comparing RL policies for robotic pusher
| datacite.subject.fos | Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática | |
| datacite.subject.sdg | 04:Educação de Qualidade | |
| datacite.subject.sdg | 09:Indústria, Inovação e Infraestruturas | |
| dc.contributor.author | Bonjour, Pedro | |
| dc.contributor.author | Lopes, Rui Pedro | |
| dc.date.accessioned | 2025-12-04T15:21:41Z | |
| dc.date.available | 2025-12-04T15:21:41Z | |
| dc.date.issued | 2026 | |
| dc.description.abstract | Reinforcement learning (RL) has been consolidated as a promising approach to optimizing robotic tasks, allowing the improvement of performance and energy efficiency. This study investigates the effectiveness of five RL algorithms in the Pusher environment. Advantage Actor-Critic (A2C), Proximal Policy Optimization (PPO), Deep Deterministic Policy Gradient (DDPG), Soft Actor-Critic (SAC) and Twin Delayed Deep Deterministic Policy Gradient (TD3). We evaluated training time, computational efficiency, and reward values to identify the most balanced solution between accuracy and energy consumption. The results indicate that the PPO offers the best compromise between performance and efficiency, with reduced training time and stability in learning. SAC achieves the best rewards but requires more training time, while A2C faces difficulties in continuous spaces. DDPG and TD3, despite t he good results, have high computational consumption, which limits their viability for real-time industrial applications. These findings highlight the importance of considering energy efficiency when choosing RL algorithms for robotic applications. As a future direction, we propose the implementation of these algorithms in a real-world environment, as well as the exploration of hybrid approaches that combine different strategies to improve accuracy and minimize energy consumption. | eng |
| dc.description.sponsorship | This work was supported by national funds through FCT/MCTES (PIDDAC): CeDRI, UIDB/05757/2020 (DOI: 10.54499/UIDB/05757/2020) and UIDP/05757/2020 (DOI: 10.54499/UIDP/05757/2020); and SusTEC, LA/P/0007/2020 (DOI: 10.54499/LA/P/0007/2020). | |
| dc.identifier.citation | Bonjour, Pedro; Lopes, Rui Pedro (2026). Comparing RL policies for robotic pusher. In 5th International Conference OL2A. Cham: Springer Nature. p. 220–230. ISBN 9783032001399 | |
| dc.identifier.doi | 10.1007/978-3-032-00140-5_15 | |
| dc.identifier.isbn | 9783032001399 | |
| dc.identifier.isbn | 9783032001405 | |
| dc.identifier.issn | 1865-0929 | |
| dc.identifier.issn | 1865-0937 | |
| dc.identifier.uri | http://hdl.handle.net/10198/35167 | |
| dc.language.iso | eng | |
| dc.peerreviewed | yes | |
| dc.publisher | Springer Nature | |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| dc.relation.ispartof | Communications in Computer and Information Science | |
| dc.relation.ispartof | Optimization, Learning Algorithms and Applications | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject | Reinforcement learning | |
| dc.subject | Autonomous robotics | |
| dc.subject | PoliciesPerformance | |
| dc.subject | Agent training | |
| dc.title | Comparing RL policies for robotic pusher | eng |
| dc.type | conference paper | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT | |
| oaire.citation.endPage | 230 | |
| oaire.citation.startPage | 220 | |
| oaire.citation.title | 5th International Conference OL2A | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| person.familyName | Lopes | |
| person.givenName | Rui Pedro | |
| person.identifier.ciencia-id | 8E14-54E4-4DB5 | |
| person.identifier.orcid | 0000-0002-9170-5078 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| relation.isAuthorOfPublication | e1e64423-0ec8-46ee-be96-33205c7c98a9 | |
| relation.isAuthorOfPublication.latestForDiscovery | e1e64423-0ec8-46ee-be96-33205c7c98a9 | |
| relation.isProjectOfPublication | 6e01ddc8-6a82-4131-bca6-84789fa234bd | |
| relation.isProjectOfPublication | d0a17270-80a8-4985-9644-a04c2a9f2dff | |
| relation.isProjectOfPublication | 6255046e-bc79-4b82-8884-8b52074b4384 | |
| relation.isProjectOfPublication.latestForDiscovery | 6e01ddc8-6a82-4131-bca6-84789fa234bd |
