Publication
Low-cost indoor localization system combining multilateration and Kalman filter
dc.contributor.author | Oliveira, Leonardo Sestrem de | |
dc.contributor.author | Rayel, Ohara Kerusauskas | |
dc.contributor.author | Leitão, Paulo | |
dc.date.accessioned | 2021-11-17T15:16:27Z | |
dc.date.available | 2021-11-17T15:16:27Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Indoor localization systems play an important role to track objects during their life-cycle in indoor environments, e.g., related to retail, logistics and mobile robotics. These positioning systems use several techniques and technologies to estimate the position of each object, and face several requirements such as position accuracy, security, range of coverage, energy consumption and cost. This paper describes a practical implementation of a BLE (Bluetooth Low Energy) based localization system that combines multilateration and Kalman filter techniques to achieve a low cost solution, maintaining a good position accuracy. The proposed approach was experimentally tested in an indoor environment, with the achieved results showing a clear low cost system presenting an increase of the estimated position accuracy by 10% for an average error of 2.33 meters | pt_PT |
dc.description.sponsorship | This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope UIDB/05757/2020. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Oliveira, Leonardo Sestrem de; Rayel, Ohara Kerusauskas; Leitao, Paulo (2021). Low-cost indoor localization system combining multilateration and Kalman filter. In 30th IEEE International Symposium on Industrial Electronics, ISIE 2021. p. 1-6. ISBN 978-1-7281-9023-5 | pt_PT |
dc.identifier.doi | 10.1109/ISIE45552.2021.9576353 | pt_PT |
dc.identifier.isbn | 978-1-7281-9023-5 | |
dc.identifier.uri | http://hdl.handle.net/10198/24205 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Indoor positioning system | pt_PT |
dc.subject | Internet of things | pt_PT |
dc.subject | Bluetooth low energy | pt_PT |
dc.subject | Kalman filtering | pt_PT |
dc.subject | Multilateration | pt_PT |
dc.title | Low-cost indoor localization system combining multilateration and Kalman filter | pt_PT |
dc.type | conference paper | |
dspace.entity.type | Publication | |
oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT | |
oaire.citation.endPage | 6 | pt_PT |
oaire.citation.startPage | 1 | pt_PT |
oaire.citation.title | 30th IEEE International Symposium on Industrial Electronics, ISIE 2021 | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Oliveira | |
person.familyName | Leitão | |
person.givenName | Leonardo Sestrem de | |
person.givenName | Paulo | |
person.identifier | A-8390-2011 | |
person.identifier.ciencia-id | 6F18-DAD8-ACDC | |
person.identifier.ciencia-id | 8316-8F13-DA71 | |
person.identifier.orcid | 0000-0002-9344-3075 | |
person.identifier.orcid | 0000-0002-2151-7944 | |
person.identifier.scopus-author-id | 35584388900 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | d39f1e66-56e1-472d-8897-969476357c9b | |
relation.isAuthorOfPublication | 68d9eb25-ad4f-439b-aeb2-35e8708644cc | |
relation.isAuthorOfPublication.latestForDiscovery | d39f1e66-56e1-472d-8897-969476357c9b | |
relation.isProjectOfPublication | 6e01ddc8-6a82-4131-bca6-84789fa234bd | |
relation.isProjectOfPublication.latestForDiscovery | 6e01ddc8-6a82-4131-bca6-84789fa234bd |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Low-Cost_Indoor_Localization_System_Combining_Multilateration_and_Kalman_Filter.pdf
- Size:
- 4.81 MB
- Format:
- Adobe Portable Document Format