Repository logo
 
Publication

Segmental durations predicted with a neural network

dc.contributor.authorTeixeira, João Paulo
dc.contributor.authorFreitas, Diamantino Silva
dc.date.accessioned2010-02-09T11:14:44Z
dc.date.available2010-02-09T11:14:44Z
dc.date.issued2003
dc.description.abstractThis paper presents a segmental durations’ model applied to the European Portuguese language for TTS purposes. The model is based on a feed-forward neural network, trained with a back-propagation algorithm, and has as input a set of phonological and contextual features, automatically extracted from the text. The relative importance of each feature, concerning the correlation with segmental durations and improvements in the performance of the model, is presented. Finally the model is evaluated objectively and subjectively by a perceptual test.pt
dc.identifier.citationTeixeira, João Paulo; Freitas, D. (2003). Segmental durations predicted with a neural network. In 8th European Conference on Speech Communication and Technology, Eurospeech-Interspeech. Geneve, Italy. p.169-172pt
dc.identifier.urihttp://hdl.handle.net/10198/1791
dc.language.isoengpt
dc.publisherISCApt
dc.titleSegmental durations predicted with a neural networkpt
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.conferencePlaceGeneve, Italypt
oaire.citation.endPage172pt
oaire.citation.startPage169pt
oaire.citation.titleEuropean Conference on Speech Communication and Technology, Eurospeech/Interspeech 2003pt
person.familyNameTeixeira
person.givenNameJoão Paulo
person.identifier663194
person.identifier.ciencia-id4F15-B322-59B4
person.identifier.orcid0000-0002-6679-5702
person.identifier.ridN-6576-2013
person.identifier.scopus-author-id57069567500
rcaap.rightsopenAccesspt
rcaap.typeconferenceObjectpt
relation.isAuthorOfPublication33f4af65-7ddf-46f0-8b44-a7470a8ba2bf
relation.isAuthorOfPublication.latestForDiscovery33f4af65-7ddf-46f0-8b44-a7470a8ba2bf

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Eurospeech03_dur_final.pdf
Size:
349.85 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.83 KB
Format:
Item-specific license agreed upon to submission
Description: