Repository logo
 
Publication

Phoneme dedicated ANN improves segmental duration model

dc.contributor.authorTeixeira, João Paulo
dc.contributor.authorFreitas, Diamantino Silva
dc.date.accessioned2010-02-11T20:52:18Z
dc.date.available2010-02-11T20:52:18Z
dc.date.issued2008
dc.description.abstractThe Phoneme Dedicated Artificial Neural Network (PDANN) segmental duration model consists of a set of ANNs trained specifically for each phoneme segment in order to avoid miscellaneous influence of different types of phoneme segments. Therefore, each ANN is dedicated to predict the duration of a specific phoneme segment. Objective and subjective measurements of the performance of the PDANN model were compared with those of a typical ANN model using the same input features and database. The results indicate a slight, but clear, perceptually perceived preference towards the PDANN.pt
dc.identifier.citationTeixeira, João Paulo; Freitas, D. (2008). Phoneme dedicated ANN improves segmental duration model. In 4th International Conference on Speech Prosody. Campinas, Brasil.pt
dc.identifier.urihttp://hdl.handle.net/10198/1866
dc.language.isoengpt
dc.titlePhoneme dedicated ANN improves segmental duration modelpt
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.conferencePlaceCampinas - Brasilpt
oaire.citation.titleFourth International Conference on Speech Prosody 2008pt
person.familyNameTeixeira
person.givenNameJoão Paulo
person.identifier663194
person.identifier.ciencia-id4F15-B322-59B4
person.identifier.orcid0000-0002-6679-5702
person.identifier.ridN-6576-2013
person.identifier.scopus-author-id57069567500
rcaap.rightsopenAccesspt
rcaap.typeconferenceObjectpt
relation.isAuthorOfPublication33f4af65-7ddf-46f0-8b44-a7470a8ba2bf
relation.isAuthorOfPublication.latestForDiscovery33f4af65-7ddf-46f0-8b44-a7470a8ba2bf

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pdann_improvessegmentaldurationmodel_final_2.pdf
Size:
192.68 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.83 KB
Format:
Item-specific license agreed upon to submission
Description: