Repository logo
 
Publication

Cluster-based analogue ensembles for hindcasting with multistations

dc.contributor.authorBalsa, Carlos
dc.contributor.authorRodrigues, Carlos Veiga
dc.contributor.authorAraújo, Leonardo Oliveira
dc.contributor.authorRufino, José
dc.date.accessioned2022-09-14T14:14:36Z
dc.date.available2022-09-14T14:14:36Z
dc.date.issued2022
dc.description.abstractThe Analogue Ensemble (AnEn) method enables the reconstruction of meteorological observations or deterministic predictions for a certain variable and station by using data from the same station or from other nearby stations. However, depending on the dimension and granularity of the historical datasets used for the reconstruction, this method may be computationally very demanding even if parallelization is used. In this work, the classical AnEn method is modified so that analogues are determined using K-means clustering. The proposed combined approach allows the use of several predictors in a dependent or independent way. As a result of the flexibility and adaptability of this new approach, it is necessary to define several parameters and algorithmic options. The effects of the critical parameters and main options were tested on a large dataset from real-world meteorological stations. The results show that adequate monitoring and tuning of the new method allows for a considerable improvement of the computational performance of the reconstruction task while keeping the accuracy of the results. Compared to the classical AnEn method, the proposed variant is at least 15-times faster when processing is serial. Both approaches benefit from parallel processing, with the K-means variant also being always faster than the classic method under that execution regime (albeit its performance advantage diminishes as more CPU threads are used).
dc.description.sponsorshipThis work has been partially supported by FCT—Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/05757/2020.
dc.identifier.citationBalsa, Carlos; Rodrigues, Carlos Veiga; Araújo, Leonardo; Rufino, José (2022). Cluster-based analogue ensembles for hindcasting with multistations. Computations. EISSN 2079-3197. 10:6, p. 1-21
dc.identifier.doi10.3390/computation10060091
dc.identifier.eissn2079-3197
dc.identifier.urihttp://hdl.handle.net/10198/25905
dc.language.isoengpt_PT
dc.publisherMDPI
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectHindcastingpt_PT
dc.subjectMeteorological datasetpt_PT
dc.subjectAnalogue ensemblept_PT
dc.subjectK-meanspt_PT
dc.subjectTime-seriespt_PT
dc.titleCluster-based analogue ensembles for hindcasting with multistationspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameBalsa
person.familyNameRufino
person.givenNameCarlos
person.givenNameJosé
person.identifier1721518
person.identifier.ciencia-idDE1E-2F7A-AAB1
person.identifier.ciencia-idC414-F47F-6323
person.identifier.orcid0000-0003-2431-8665
person.identifier.orcid0000-0002-1344-8264
person.identifier.ridM-8735-2013
person.identifier.scopus-author-id23391719100
person.identifier.scopus-author-id55947199100
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationd0e5ccff-9696-4f4f-9567-8d698a6bf17d
relation.isAuthorOfPublication1e24d2ce-a354-442a-bef8-eebadd94b385
relation.isAuthorOfPublication.latestForDiscoveryd0e5ccff-9696-4f4f-9567-8d698a6bf17d
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
computation-10-00091-v2.pdf
Size:
872.33 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: